SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Mathematical methods for physical chemistry - M403016
Title: Matematické metody pro fyzikální chemii
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Kolafa Jiří prof. RNDr. CSc.
Malijevský Alexandr prof. Mgr. Ph.D., DSc.
Classification: Chemistry > Physical Chemistry
Mathematics > Mathematics General
Interchangeability : N403045
Examination dates   Schedule   
Annotation -
The course repeats and extends the basic mathematical knowledge of students by advanced topics needed for theoretical and experimental work. The chosen methods are illustrated on solved problems.
Last update: Kubová Petra (10.01.2018)
Course completion requirements -

Elaboration of homework.

Exam test, oral exam.

Last update: Řehák Karel (02.03.2018)
Literature -

Z:Boas, M. L.: Mathematical Methods in the Physical Sciences

R:Goodson D.Z., Mathematical methods for physical and analytical chemistry,Wiley,New York,2011,978-0-470-47354-2

A:Rektorys K,Přehled užité matematiky I,Praha,Prometheus,2009,978-80-7196-180-2

A:Ralston A.,Základy numerické matematiky,Praha,Academia,1978

Last update: Kubová Petra (10.01.2018)
Teaching methods -

Lectures within which illustrative problems will be solved. Within the part covering numerical methods the mathematical software Maple will also be used.

Last update: Kubová Petra (10.01.2018)
Syllabus -

1. Calculus of single variable functions

2. Calculus of multivariable functions

3. Coordinate transformation. Path and surface integrals

4. Ordinary differential equations

5. Partial differential equations, Green function

6. Fourier transform

7. Calculus of variations

8. Linear algebra: overview

9. Fundamentals of Numerical Mathematics: interpolation and extrapolation, numerical differentiation and quadrature

10. Numerical solutions of differential equations

11. Fitting of functions

12. Introduction to Mathematical Statistics I

13. Introduction to Mathematical Statistics II

14. Experiment design in terms of statistics and errors

Last update: Kubová Petra (10.01.2018)
Learning resources -

http://www.vscht.cz/fch/cz/pomucky/kolafa/N403045.html

Last update: Kubová Petra (10.01.2018)
Learning outcomes -

Students will be able to:

Solve standard mathematical problems

Solve advanced problems in many areas of physical chemistry and other areas of chemistry and technology.

Propose experiments and process data including error analysis.

Know what type of problems can be solved mathematically, which methods are apropriate, and how to design a strategy solutions (analytical calculation, numerical modeling or computer simulation)

Last update: Kubová Petra (10.01.2018)
Registration requirements -

Mathematics I, Physical Chemistry I

Last update: Kubová Petra (10.01.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
3 / 3 84 / 84
Coursework assessment
Form Significance
Homework preparation 30
Examination test 60
Oral examination 10

 
VŠCHT Praha