SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Chemical Reactor Engineering - M409018
Title: Inženýrství chemických reaktorů
Guaranteed by: Department of Chemical Engineering (409)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: summer
Points: summer s.:4
E-Credits: summer s.:4
Examination process: summer s.:
Hours per week, examination: summer s.:2/1, C+Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Grof Zdeněk doc. Ing. Ph.D.
Lindner Jiří Ing. Ph.D.
Kočí Petr prof. Ing. Ph.D.
Interchangeability : AM409018, N409076
Is interchangeable with: AM409018
Examination dates   Schedule   
This subject contains the following additional online materials
Annotation -
The subject covers the design and the operation of common types of chemical reactors (i.e. batch, semi-batch, continuous flow, tube) including the description of selected modern technologies (photochemical reactors and bioreactors, membrane reactors, micro-reactors). The chemical engineering description of reactors consists of material and energy balances, chemical equilibrium, reaction kinetics including the explanation of reaction mechanism, adsorption of reacting species on the surface of the catalyst, mass transport through porous catalyst particle, and the introduction to polymerization reactions. The material covered by this subject extends the knowledge gained in the scope of Chemical Engineering and Physical Chemistry courses.
Last update: Hladíková Jana (16.01.2018)
Literature -

R: Fogler H. S., Essentials of Chemical Reaction Engineering, Prentice Hall 2011, ISBN 978-0-13-714612-3

A: Fogler H. S., Elements of Chemical Reaction Engineering 4-th. Ed., Prentice Hall 2006, ISBN 0-13-127839-8

A: Davis M. E. and Davis R.J., Fundamentals of Chemical Reaction Engineering, McGraw-Hill 2003, ISBN 0-07-245007-X

Last update: Hladíková Jana (16.01.2018)
Requirements to the exam - Czech

Zápočet: Písemný test zaměřený na řešení výpočetně orientovaných problémů se bude psát v termínech vypsaných ve zkouškovém období. K získání zápočtu je potřeba získat hodnocení minimálně 50 bodů ze 100. Test je možné dvakrát opakovat.

Ústní zkouška: Podmínkou k účasti na ústní zkoušce je získání zápočtu. Student odpovídá na otázky ze dvou tematických okruhů. Každá otázka je hodnocena 50 body, k úspěšnému složení zkoušky je nutné získat z každé otázky minimálně 20 bodů.

Výsledné hodnocení: Součet bodů dosažených v písemném testu a na ústní zkoušce se převede na výslednou známku podle tabulky:

Celkový součet bodů / Klasifikace

0 -100 / F

100-119 / E

120-139 / D

140-159 / C

160-179 / B

180-200 / A

Last update: Hladíková Jana (16.01.2018)
Syllabus -

1. Introduction. Reaction kinetics. Thermochemistry. Stoichiometry.

2. Reaction equilibrium.

3. Material balances for basic reactor configurations (batch, CSTR, plug-flow)

4. Enthalpy balances.

5. Local material and enthalpy balances, Fick's and Fourier's law, continuity equation, Fourier-Kirchhoff equation.

6. Tube reactor with the axial dispersion.

7. Chemical reaction mechanism.

8. Reaction kinetics analysis from the experimental data.

9. Enzyme reaction. Bioreactors.

10. Heterogeneous catalysis - adsorption, surface reaction, desorption.

11. Heterogeneous catalysis - mass transport. Internal and external efficiency coefficients.

12. Residence time distribution. Non-ideal reactors. Minimum (segregation flow) and maximum mixing models.

13. Membrane, photochemical, and electrochemical reactors, micro-reactors, lab-on-a chip devices.

14. Optimization of the yield of reversible reactions. Reaction selectivity optimization.

Last update: Hladíková Jana (16.01.2018)
Learning resources -

e-learning.vscht.cz

http://www.grc.nasa.gov/WWW/CEAWeb/ceaThermoBuild.htm

http://webbook.nist.gov/

http://www.vscht.cz/fch/cz/pomucky/prednasky.html (in czech)

Last update: Grof Zdeněk (01.04.2020)
Learning outcomes -

Students will be able to:

  • Write up the mathematical model describing the processes taking place inside common type reactors including bio-reactors.
  • Understand the influence of various operational parameters (e.g. residence time, temperature) on the performance (e.g. conversion and selectivity) of a particular reactor type and use mathematical modelling tools to find optimum reactor design parameters.
  • Understand and write up mathematical equations for the external and the internal mass transport and the adsorption in heterogeneous catalysts.

Last update: Hladíková Jana (16.01.2018)
Registration requirements -

Unit Operations of Chemical Engineering I.

Physical Chemistry I.

Last update: Hladíková Jana (16.01.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 0.5 14
4 / 4 112 / 112
Coursework assessment
Form Significance
Examination test 50
Oral examination 50

 
VŠCHT Praha