SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Systems of Ordinary Differential Equations (ODE) - M413002
Title: Soustavy obyčejných diferenciálních rovnic
Guaranteed by: Department of Mathematics (413)
Faculty: Faculty of Chemical Engineering
Actual: from 2019 to 2020
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Dubcová Miroslava RNDr. Ph.D.
Classification: Mathematics > Mathematics General
Interchangeability : N413007
Examination dates   Schedule   
This subject contains the following additional online materials
Annotation -
The course deals with the qualitative theory of differential equations. The theory of differential equations is presented with the emphasis on its geometric and qualitative aspects and is understood as a part of more general theory of dynamical systems.
Last update: Pátková Vlasta (09.01.2018)
Course completion requirements -

Assesment, written exam, oral exam

Last update: Dubcová Miroslava (16.02.2018)
Literature -

R: A. Klíč, M. Dubcová,L. Buřič: Soustavy obyčejných diferenciálních rovnic, kvalitativní teorie, dynamické systémy, VŠCHT Praha, 2009, ISBN: 978-80-7080-724-8

R: R.C.Robinson: An Introduction to Dynamical Systems: Continuous and Discrete. AMS, 2012 ISBN: 978-0821891353

A: M. W. Hirsch, S. Smale, R. L. Devaney: Differencial Equations, Dynamical Systems & An Introductions to Chaos, Elsevier 2004, ISBN0-12-349703-5

Last update: Dubcová Miroslava (18.10.2018)
Teaching methods -

Lectures and exercise classes.

Last update: Pátková Vlasta (09.01.2018)
Syllabus -

1. The concept of dynamical systems. Continuous and discrete dynamical systems.

2. Autonomous systems of ODEs. Qualitative approach. Phase flow. The notion of stability.

3. Planar systems. Phase portraits of linear systems.

4. Phase portraits of nonlinear systems. Grobman-Hartman theorem.

5. Closed trajectory. Bendix and Poiancaré criteria

6. First integrals and applications.

7. Population model "Predator - Prey". Hamilton systems in the plane.

8. Newton's equation

9. Phase portraits of linear and nonlinear systems in R3.

10. Ljapun's function. Gradient systems.

11. Systems of ODEs depending on parameters. Bifurcations.

12. Examples: "Brusselator", Lorenz system, dumped oscillator.

13. Discrete dynamical systems, basic notions.

14. Discrete dynamic systems.

Last update: Dubcová Miroslava (16.02.2018)
Learning resources -

http://www.vscht.cz/mat/SODR/E-collection/SbirkaDR-Ang.pdf

Last update: Pátková Vlasta (09.01.2018)
Learning outcomes -

Students should be able to describe autonomous systems of differential equations qualitatively. Namely, they should be able to determine stability of solutions, to recognize chaotic attractor and to classify bifurcations.

Last update: Pátková Vlasta (09.01.2018)
Entry requirements -

Students are expected to have either completed the prerequisite courses Mathematics A and Mathematics B or possess the equivalent knowledge prior to enrolling in the course.

Last update: Borská Lucie (13.05.2019)
Registration requirements -

No requirements.

Last update: Borská Lucie (06.05.2019)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 0.5 14
5 / 5 140 / 140
Coursework assessment
Form Significance
Regular attendance 10
Examination test 35
Continuous assessment of study performance and course -credit tests 20
Oral examination 35

 
VŠCHT Praha