|
|
|
||
The course is focused on comprehension of commonly used neural network architectures, suitable for various types of solved problems and processed data. Lectures cover the necessary theory, but are mainly focused on practical aspects of neural network design. For seminars, students will try to train the designed models of neural networks and further optimize them.
Last update: Cejnar Pavel (14.06.2022)
|
|
||
The student passes the practicals by submission of sufficient number of assignments (obtaining the appropriate number of points, including bonus points). The assignments are announced regularly during the whole semester. The student can choose which of the assignments to work on in order to obtain the necessary number of points. The written exam test consists of randomly selected questions from a set of previously announced exam questions. Classification in the exam can be improved or replaced by submission of an extended number of assignments (obtaining the extended number of points).
Last update: Cejnar Pavel (14.06.2022)
|
|
||
A: Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org Last update: Cejnar Pavel (22.09.2023)
|
|
||
1. Introduction to neural networks. 2. Feed-forward neural networks, basic architectures and activation functions. 3. Optimization algorithms for training. 4. Regularization of neural network models. 5. Frameworks for neural network development. 6. Convolutional neural networks, normalization. 7. Architectures suitable for deep convolutional neural networks. 8. Architectures for object detection and segmentation. 9. Pre-training and fine-tuning of deep neural networks. 10. Recurrent neural networks and problems of their training. 11. Recurrent neural networks - bidirectional and deep recurrent networks. 12. Transformer architecture. 13. Design and optimization of neural networks in various environments. 14. Reinforcement learning.
Last update: Cejnar Pavel (22.09.2023)
|
|
||
https://moodle.vscht.cz/enrol/index.php?id=55 Last update: Cejnar Pavel (14.06.2022)
|
|
||
Studenti budou umět: (i) vybrat vhodnou architekturu neuronové sítě pro zvolený typ dat (ii) navrhnout příslušný model a vybrat vhodný optimalizační algoritmus pro trénování Last update: Cejnar Pavel (14.06.2022)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1 | 28 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |
Coursework assessment | |
Form | Significance |
Regular attendance | 30 |
Report from individual projects | 30 |
Oral examination | 40 |