SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Bioorganic Chemistry - N110027
Title: Bioorganická chemie
Guaranteed by: Department of Organic Chemistry (110)
Faculty: Faculty of Chemical Technology
Actual: from 2008 to 2020
Semester: summer
Points: summer s.:5
E-Credits: summer s.:5
Examination process: summer s.:
Hours per week, examination: summer s.:3/0, Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Old code: BIORG
Guarantor: Hocek Michal prof. Ing. DSc.
Is interchangeable with: M110008
Examination dates   Schedule   
Annotation -
The course of Bioorganic chemistry covers the exciting and modern interdisciplinary area at the interface between organic chemistry and biochemistry or biology. It combines and compares molecular principles of structures of functions of biomolecules, molecular principles of biological and biochemical processes (organic chemistry of biochemical pathways), chemical syntheses and biosyntheses of biomolecules and biomacromolecules, use of biochemical and biological means in organic synthesis (biocatalysis), use of chemical means in studying and modulation of biological processes (chemical biology), construction of artificial bioanalogous systems (synthetic biology) and also gives basic physical and chemical principles of modern techniques of biochemistry and molecular biology. It gives the necessary background for an organic chemist to be able to actively collaborate with biochemists or biologists.
Last update: TAJ110 (27.06.2007)
Literature -

A: Van Vranken D., Weiss G. A.: Introduction to Bioorganic Chemistry and Chemical Biology, Taylor & Francis Group, 2012. 9780815342144

Last update: Cibulka Radek (28.08.2013)
Syllabus -

1.Introduction: basic principles of molecular interactions in chemistry and biology, short introduction to cellular biology.

2.Structure and functions of nucleic acids: structures of DNA and RNA, genetic information, other functions of RNA, triplexes and quadruplexes, complexes of nucleic acids with proteins, binding of small molecules, DNA damage.

3.Biosynthesis and metabolism of nucleic acids and their components: biosynthesis of DNA (replication) and RNA (transcription) and their further modifications, catabolism of nucleic acids, biosynthesis and catabolism of nucleobases, nucleosides and nucleotides.

4.Chemical and enzymatic syntheses of nucleic acids and their components: chemical synthesis and modifications of nucleobases, nucleosides and nucleotides, chemical synthesis of oligonucleotides on solid-support, biocatalytical synthesis and construction of oligonucleotides and nucleic acids (primer extension, PCR).

5.Structure and functions of proteins: structures of proteins (primary to quaternary), conformations, conjugates (glyco-, phospho-, metalloproteins etc.), isolation and analysis of proteins, structure and function of peptides

6.Biosynthesis and metabolism of proteins: biosyntheses and metabolism of amino acids, biosynthesis of proteins (translation), posttranslation modifications, cleavage and catabolism of proteins, protein engineering, regulation of gene expression

7.Chemical and biotechnological syntheses of peptides and proteins: chemical syntheses of peptides in solution and on solid support, protecting and activating groups, combination of chemical and enzymatic approaches, recombinant method, peptidomimetics, combinatorial approaches

8.Enzymes and mechanisms of enzymatic reactions: enzymes, cofactors, mechanisms and regulation of enzymatic reactions, thermodynamics and kinetics of enzymatic reactions, inhibition

9.Biocatalytical and biotechnological methods in organic synthesis: use of enzymes, antibodies and whole microorganisms and cell cultures in organic synthesis, enzyme engineering and biotechnology

10.Carbohydrates: structure and functions of carbohydrates and oligosaccharides, metabolism and basic principles in chemical syntheses of oligosaccharides and glycosides, saccharide code, synthetic vaccines

11.Membranes and regulation processes: structures and functions of biomembranes, transports of ions and molecules through membranes, regulation processes - hormones, receptors and signal transduction cascades

12.Biosynthesis and metabolism of other classes of natural compounds: metabolism of lipids, terpenoids, alkaloids, polyketides etc., biomimetic total syntheses of natural compounds

13.Chemical biology: use of chemical means in studying and modulation of biological processes, structural analogues of biomolecules (antimetabolites), chemical genetics, construction of artificial bioanalogous systems, principles of in vitro selection

14.Basic principles of modern methods of biochemistry and molecular biology: chemical principles and insight into production, isolation and analysis of nucleic acids and proteins, sequencing, blotting, PCR etc.

Last update: Cibulka Radek (26.08.2013)
Learning resources -

Available from the lecturer (copies of all presentations on CD)

Last update: Hocek Michal (22.08.2013)
Learning outcomes -

Students will be able to:

understand the structure and function of biomolecules

know molecular principles and reaction mechanisms of biological and biochemical processes

chemical syntřheses of biomolecules and bioconjugates

applications of biocatalysis in chemistry

Last update: Cibulka Radek (26.08.2013)
Registration requirements -

Organic Chemistry I, Biochemistry

Last update: Cibulka Radek (28.08.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1.5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 2 56
5 / 5 140 / 140
Coursework assessment
Form Significance
Oral examination 100

 
VŠCHT Praha