SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Optoelectronics - N126010
Title: Optoelektronika
Guaranteed by: Department of Solid State Engineering (126)
Faculty: Faculty of Chemical Technology
Actual: from 2016 to 2020
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, C+Ex [HT]
Extent per academic year: 2 [hours]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Guarantor: Myslík Vladimír doc. Ing. CSc.
Examination dates   Schedule   
Annotation -
The course provides students with a set of technical means using the unique properties of photons to transfer energy and information. Lectures provide a comprehensive overview of the principles, technology of preparation, and on the characteristics and basic applications of optoelectronic devices. The lecture is followed by a practical study of specific technologies optoelectronic components and systems and measurements of their important optical and electrical properties.
Last update: TAJ126 (28.11.2013)
Literature -

R: B. E. A. Saleh, M. C. Teich: Fundamentals of photonics; John Wiley & Sons, Inc., New York, ISBN 0-471-83965-5

R: B. E. A. Saleh, M. C. Teich: Základy fotoniky,překlad knihy: 4 svazky, Matfyzpress 1994, ISBN 80-85863-05-7

A: I. Burger, L. Hudec: Elektronické prvky; Alfa, Bratislava 1989, ISBN 80-05-00120-7

Last update: Myslík Vladimír (29.08.2013)
Syllabus -

1. Physical fundamentals of optoelectronic structures - interpretation of the basic principles of quantum theory - observing quantum object , the uncertainty principle , the principle of complementarity, the correspondence principle , the formalism of quantum theory

2. The interaction of matter and radiation - bosons, fermions, the interaction, the properties of photon absorption, spontaneous and stimulated emission, rate equations

3. Classification materials for optoelectronics - optical transmittance, reflectance, energy models, direct and indirect semiconductors

4. Radiation sources - inversion of energy level, resonator, critical pumping conditions, steady - state, transient phenomena, coherence

5. High power solid state lasers and gas lasers, supply of energy to the laser - pumping, materials and construction, materials and construction, Q - switched lasers

6. Light-emitting diodes - supply of energy (pumping), band diagrams, materials, technology, design, optical and electrical properties

7. Semiconductor laser - excitation, principle, heterostructures, band diagrams, materials

8. Technology of semiconductor laser structure - resonators, optical and electrical properties, integration of lasers

9. Optical fibers - the conditions of propagation of light, the step change of refractive index, gradient fibers and single - mode fibers, optical coupling, fiber fabrication

10. Optical detectors - principles of detection, the ultimate limit of a optical detectors, PN photodiodes , PIN photodiodes, phototransistors, materials technology, optical and electrical data

11. Interdigital photodetectors - integration , the principle of solar cell - materials and technology

12. Optoelectronic systems, characteristics of optocouplers , the principle of optical communications

13 Integrated optoelectronics , optical signal processing

14 Basics of holography and holographic principle record information

Laboratory instruction:

Measuring fundamental properties of optoelectronic devices , radiation sources, photo detectors , elementary optoelectronic systems

Last update: Myslík Vladimír (29.08.2013)
Learning resources -

Educational Presentations available at the teacher.

Last update: TAJ126 (28.11.2013)
Learning outcomes -

Students will be able to:

Use the basic principles of optoelectronics, analyze and optimize the technology of optoelectronic structures with regard to resulting optical and electrical parameters. Separately prepare reports on measurements of basic parameters of selected structures.

Last update: TAJ126 (24.09.2013)
Registration requirements -

Introduction to Electronics

Electronics

Last update: Myslík Vladimír (29.08.2013)
Teaching methods
Activity Credits Hours
Účast v laboratořích (na exkurzi nebo praxi) 1 28
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1 28
4 / 3 112 / 84
Coursework assessment
Form Significance
Report from individual projects 25
Oral examination 75

 
VŠCHT Praha