|
|
|
||
Within this course contemporary high-throughput sequencing techniques are introduced. The main focus of the course is on individual applications such as, e.g., ChIP-Seq, RNA-Seq, resequencing, metagenomics or de-novo sequencing. A procedures of the complete analyses for individual applications will be described, and will be demonstrated during practical exercises. Explained knowledge includes sequence quality reading ("base calling") and its control, data formats and standards, advanced software tools and evaluation of their suitability, mapping of sequence data, short and long sequence assembly, identification of SNPs, and functional annotation.
Last update: TAJ143 (03.12.2013)
|
|
||
R: Bergman N. H. (Ed.), Comparative Genomics (Volume 1 and Volume 2), Humana Press Inc. 2007, ISBN: 978-158829-693-1, 978-193411-537-4 R: Rodriguez-Ezpeleta N., Hackenberg M., Aransay A. M. (Eds.), Bioinformatics for High Throughput Sequencing, Springer Science 2012, ISBN: 978-1-4614-0781-2 A: Janitz M. (Ed.), Next-Generation Genome Sequencing: Towards Personalized Medicine, Wiley-VCH 2008, 978-3-527-32090-5 A: Brown S. M. (Ed.), Next-Generation DNA Sequencing Informatics, Cold Spring Harbor Laboratory Press 2012, ISBN: 978-1-936113-87-3 Last update: ROZ143 (02.08.2013)
|
|
||
Zápočet: praktický projekt Zkouška: písemný test Last update: ROZ143 (10.06.2013)
|
|
||
1. Itroduction to genomics and sequencing: historical overview, basic concepts. 2. Sequencing techniques: Sanger method, NGS (new generation sequencing): Illumina, SOLID, 454, etc. Comparison of sequencing techniques. 3. Sequencing data: Visualization - EnsEMBL, UCSC Browser, Artemis, ACT, Mummer, Circos. Base-calling and sequence quality control. Data formats. 4. DNA sequence assembly I: Sequence mapping onto reference genome. De novo assembly of long sequencies - newbler, mira. De novo assembly of short sequencies - WGS, velvet, soap2, AbySS. 5. DNA sequence assembly II: Sequencing projects, cDNA sequencing, scaffold formation. Software - Staden, AMOS, Consed. 6. Genome annotation: Prediction of gene models. Identification of non-coding RNA. Identification of protein domains. Functional annotation. Database sources and annotation systems. 7. Detection of sequence variations: Identification of single-nucleotide polymorphisms (SNPs), insertions and deletions, translocations, inversions, and copy-number variations (CNVs). 8. Analysis of protein-nucleic acid: ChIP-seq - protein/DNA interaction. CLIP-seq - protein/RNA interaction. 9. Differential expression I: RNA-seq. Sequence mapping. Measurement of gene expression. Normalization, summarization and differential expression. Identification of transcript variants - alternative splicing. Experimental design. 10. Differential expression II: micro RNA expression profiling. Identification of novel micro RNAs. 11. Epigenomics: Analysis of whole-genome methylation maps. 12. Metagenomics: gene annotation and metabolism reconstruction - MG-RAST. Amplicon sequencing (16S rDNA) and analysis of taxonomic units. 13. Comparative genomics: Interspecific genome comparison. 14. Genome projects: ENCODE. Paleogenomics. Sequencing projects. WWW tools - Galaxy, GMOD, Gbrowser, BioCycle, RAST, EnsEMBL API. Personalised medicine. Last update: ROZ143 (02.08.2013)
|
|
||
none Last update: ROZ143 (02.08.2013)
|
|
||
Students will be able to:
Last update: TAJ143 (03.12.2013)
|
|
||
Biochemistry, Molecular genetics Last update: ROZ143 (02.08.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Obhajoba individuálního projektu | 0.5 | 14 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Práce na individuálním projektu | 0.5 | 14 | ||
Příprava na zkoušku a její absolvování | 1 | 28 | ||
4 / 4 | 112 / 112 |
Coursework assessment | |
Form | Significance |
Defense of an individual project | 30 |
Examination test | 70 |