SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Data Processing in Statistics - N323008
Title: Statistické zpracování dat
Guaranteed by: Department of Food Analysis and Nutrition (323)
Faculty: Faculty of Food and Biochemical Technology
Actual: from 2015 to 2020
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:1/2, MC [HT]
Capacity: 20 / 20 (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Additional information: http://mms01.vscht.cz/vyuka/
Guarantor: Pudil František Ing. CSc.
Kocourek Vladimír prof. Ing. CSc.
Is interchangeable with: B323006
Examination dates   Schedule   
Annotation -
Basic statistical analysis with small numerical data sets. Working with the actual versions of MS Excel and Statistica for Windows (StatSoft).
Last update: TAJ323 (12.12.2013)
Course completion requirements -

Individual statistical project

Last update: PUDILF (15.08.2013)
Literature -

R: Eckschlager K., Horsák I., Kodejš Z.: Vyhodnocování analytických výsledků a metod, SNTL Praha, 1980, ISBN 04-610-80

Electronic resources:

R: Elektronická nápověda k programu MS Excel podle aktuální verze

R: http://www.statistica.cz/

A: http://mms01.vscht.cz/vyuka/

Last update: TAJ323 (16.08.2013)
Teaching methods -

Lectures, seminars and individual work

Last update: PUDILF (15.08.2013)
Requirements to the exam -

Lectures, seminars and individual project

Last update: PUDILF (15.08.2013)
Syllabus -

1. History introduction, histogram, random value.

2. Frequency - absolute, relative, cumulative and relative cumulative, probability, random selection, variartion, permutation, combination.

3. Frequency and distributin function.

4. Absolute and relative error, statistical estimations, mean value, variance, curtoisis, skewnes.

5. Statistical tests - parametric.

6. Statistical tests - nonparametric.

7. Regression - linear.

8. Regression - nonlinear, polynomic, linearization.

9. Correlation, coefficient and matrix.

10. Analysis of variance.

11. Introduction to the multivariate methods.

12. Basic principles of the neural networks.

13. Using fuzzy sets.

14. New trends in data processing.

Last update: TAJ323 (16.08.2013)
Learning resources -

http://mms01.vscht.cz/vyuka/

Last update: PUDILF (15.08.2013)
Learning outcomes -

Student will be able to:

  • Use statistic functions and macros in MS Excel, simple statistic analysis with Statistica (modul Basic).
Last update: TAJ323 (12.12.2013)
Entry requirements -

Required N413002

Last update: PUDILF (15.08.2013)
Registration requirements -

Mathematics I, Computer technology I

Last update: PUDILF (15.08.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 0.5 14
Práce na individuálním projektu 1.5 42
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
4 / 3 112 / 84
Coursework assessment
Form Significance
Regular attendance 50
Defense of an individual project 50

 
VŠCHT Praha