|
|
|
||
The course develops and strengthens the concepts and skills of elementary mathematics (the course of mathematics MI), particularly the skills related to various disciplines of the curriculum of the master's study.
Last update: TAJ413 (17.12.2013)
|
|
||
A: Porubský: Fundamental Mathematics for Engineers,Vol.I, Vol.I, VŠCHT, 2001, ISBN: 80-7080-418-1 Last update: KNOBLOCL (17.12.2015)
|
|
||
Přednášky a cvičení Last update: Turzík Daniel (19.11.2012)
|
|
||
1. Geometry in R^3 (R^n). Metrics in R^n. 2. Differential calculus in R^n. Functions of two and more variables. Directional and partial derivatives. Gradient. Newton’s method. 3. Taylor’s formula. The Hessian and extreme values. Method of least squares. 4. Implicit function theory. 5. Parametric curves in the plane and in the space, vector tangent to curve, application in Physics. 6. Vector fields in R^2, R^3. Line integral of the vector field. 7. Line integrals independent of the path. Differential form, exact differential form, potential vector field. 8. Double and triple integrals. Fubini theorem. 9. Substitution in double and triple integral. Polar, cylindrical, and spherical coordinates. Improper integrals. 10. Linear space, base, dimension. Spaces R^n and C(I). 11. Linear mapping, kernel of lin. mapping, matrix representation, inverse matrix, matrix equations. 12. Differential equations, basic notions, method of separation. 13. Linear differential equations of the 1st and 2nd order. The variation of constants method. 14. The system of two linear and nonlinear dif.equations of the first order. Lotka-Wolterra system.
Last update: TAJ413 (30.08.2013)
|
|
||
http://www.vscht.cz/mat/El_pom/sbirka/sbirka2.html http://www.vscht.cz/mat/El_pom/Mat_MATH_MAPLE.html Last update: SIMERSKC (29.08.2013)
|
|
||
Students will be able to: 1. use basic mathematical notions 2. know and understand basic mathematical methods 3. solve problems individually 4. gain basic knowledge of the mathematical concepts used to describe the science and engineering problems 5. get acquainted with the computational algorithms (differential equations)
Last update: SIMERSKC (29.08.2013)
|
|
||
Mathematics I Last update: SIMERSKC (29.08.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 2.5 | 70 | ||
Příprava na zkoušku a její absolvování | 2 | 56 | ||
Účast na seminářích | 1.5 | 42 | ||
8 / 8 | 224 / 224 |
Coursework assessment | |
Form | Significance |
Regular attendance | 10 |
Examination test | 35 |
Continuous assessment of study performance and course -credit tests | 20 |
Oral examination | 35 |