|
|
|
||
The main goal of the course is to familiarize the students with the common generally valid principles of system identification both analogue and discrete
Last update: TAJ445 (14.12.2013)
|
|
||
R:Šimandl M.,Identifikace systémů a filtrace, Vydavatelství ZČU, Plzeň,1997,8070821701 R:Noskievič P.,Modelování a identifikace systémů,Montanex a.s.,Ostrava,1999,80722250302 A:Ljung L.,Systém Identification. Theory for the User,Prentice Hall PTR,N.J.,1999,0136566952 Last update: TAJ445 (30.09.2013)
|
|
||
Student will obtain the credits after the successful finishing Last update: Bártová Darina (25.06.2013)
|
|
||
1. Experimental identification - basic scheme, wide and narrow definition of the branch 2. Structure model selection and process dynamics 3. Signals and their characteristics, signal discretization. Input testing signals, their selection 4. Adequacy criteria for models and processes, least square method, its modification 5. Identification methods classification, deterministic models in time and frequency domain 6. Dynamic system identification via transfer characteristics - project I 7. Methods of Strejc, Broid, progressive integration - project II 8. Frequency domain identification - method of Kardašov-Karnjušin 9. Frequency domain identification - correlation and spectral analysis, statistic dynamics methods 10. Stochastic models of discrete type, noise models, drift description 11. Parameter estimation methods for discrete models, least square - simple and weighted 12. Generalized, extended, repeated LSM, maximum credibility method 13. Numeric solution of LSM, recursive methods, robust identification, bootstrap, jackknife - project III 14. Large project Last update: Bártová Darina (25.06.2013)
|
|
||
internal materials Last update: Bártová Darina (25.06.2013)
|
|
||
Students will be able to: • work with common identification methods • work with their implementation • evaluate their efficiency • students will take part in one large complex work (beginning with data measuring up to model formulation) • students will use MATLAB interface for model identification Last update: TAJ445 (14.12.2013)
|
|
||
Matematics II Last update: Bártová Darina (25.06.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Obhajoba individuálního projektu | 1.5 | 42 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Příprava na zkoušku a její absolvování | 1 | 28 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |
Coursework assessment | |
Form | Significance |
Regular attendance | 15 |
Report from individual projects | 20 |
Oral examination | 65 |