|
|
|
||
In this course, we discuss most popular data mining algoritms and optimization techniques such as decision trees, support vector machines, multilayered perceptrons etc. We also explain theoreticaly basic elements of statistical learning that are essential for all data engineers.
Last update: Jirát Jiří (31.01.2014)
|
|
||
R:Hastie T.,Tibshirani R.,Friedman J., The Elements of Statistical Learning, Data Mining, Inference and Prediction, Springer, 2011 Last update: Jirát Jiří (31.01.2014)
|
|
||
1. Introduction to data mining, classification, prediction, K-NN algorithm and variants 2. Model, evaluation, plasticity regularization 3. Classification and Regression from statistical point of view 4. Decision Trees (C4.5, CART, MARS algorithms) 5. Classification by means of perceptrons and its generalization 6. Linear, polynomial and logistic regression, LMS, MLE algorithms 7. Nonlinear SVM-classifiers and the SV-regression 8. Inductive modelling - GMDH MIA, COMBI 9. Nonlinear regression by multilayered perceptrons 10. Ensemble models (Adaboost algorithm) 11. Statistical approach to neural networks 12. Cluster analysis (K-means, agglomerative clustering, neural gas, SOM) 13. A statistical approach to number of hidden neurons selection Last update: Jirát Jiří (31.01.2014)
|
|
||
https://edux.fit.cvut.cz/courses/MI-ADM (login necessary) Last update: Jirát Jiří (31.01.2014)
|
|
||
Students will be able to: use theoretical background that is needed for skillful application of data mining algoritms in the field of classification, regression and clustering Last update: Jirát Jiří (31.01.2014)
|
|
||
Statistics Last update: Jirát Jiří (31.01.2014)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Práce na individuálním projektu | 2.2 | 61 | ||
Účast na seminářích | 0.5 | 14 | ||
4 / 4 | 103 / 112 |