|
|
|
||
The aim of the course is to supplement the students' knowledge especially in the field of functional analysis in order to understand the mathematical fundamentals of the finite element method. The finite element method is an advanced numerical method that allows continuous approximation of solutions of partial differential equations.
Last update: Janovská Drahoslava (24.09.2018)
|
|
||
Presentation of the solution of three particular problems and discussion on the existence and uniqueness of the solution. Oral exam. Last update: Janovská Drahoslava (25.09.2018)
|
|
||
1. D. Braess: Finite Elements, Cambridge University Press, 1997. 2. S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Elements, Texts in Applied Mathematics, Vol. 15, Springer, New York, 1994. 3. W. Hundsdorfer, J. Verwer: Numerical solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer-Verlag, Berlin, Heidelberg, 2003. 4. D. Janovská: Stručně o metodě konečných prvků. Sborník prací ze semináře ”Reakční a transportní jevy II”, Konopiště 8.–11.6.2007, ed. M. Marek, I. Schreiber, L. Schreiberová, Vydavatelství VŠCHT, Praha, 2007, pp. 46–60. 5. V. N. Kaliakin: Introduction to Approximate Solution Techniques, Numerical Modeling,and Finite Element Methods, Marcel Dekker, Inc., New York, Basel, 2002. 6. M. Kubíček, M. Dubcová, D. Janovská: Numerické metody a algoritmy, skripta VŠCHT, 2. vydání, 2005. 7. P. Wesseling: An Introduction to Multigrid Methods, John Wiley & Sons, 1992. 8. L. Zajíček: Vybrané úlohy z matematické analýzy, Matfyzpress, Praha, 2002. Last update: Janovská Drahoslava (25.09.2018)
|
|
||
Lectures and seminar. Last update: Janovská Drahoslava (25.09.2018)
|
|
||
1. Method of weighted residua. 2. Finite Element Method - Introduction. 3. Necessary minimum of functional analysis. 4. Sobolev's spaces. 5. Variational formulation of boundary value problems. 6. A simple one-dimensional boundary value problem. 7. Formulation on elements. 8. Global stiffness matrix. 9. Selected methods of numerical linear algebra. 10. Variational formulation of two and three-dimensional boundary value problems. 11. Numerical implementation. 12. Different types of elements. 13. FEM for three-dimensional problems. 14. Numerical methods for solving systems of linear algebraic equations. Last update: Janovská Drahoslava (25.09.2018)
|
|
||
http://old.vscht.cz/mat/Info.html Last update: Janovská Drahoslava (25.09.2018)
|
|
||
Students will learn the basics of functional analysis needed to understand finite element method. They learn to compile the variation formulation of the problem, create a discrete formula, calculate the stiffness matrix, and the right side vector. Within the seminar, each student develops three specific tasks, including a discussion of the existence and uniqueness of the solution. Last update: Janovská Drahoslava (25.09.2018)
|
|
||
Mathematics, to the same extent as Mathematics A, B. Last update: Janovská Drahoslava (25.09.2018)
|
|
||
none Last update: Borská Lucie (16.09.2019)
|
Coursework assessment | |
Form | Significance |
Defense of an individual project | 50 |
Oral examination | 50 |