SubjectsSubjects(version: 963)
Course, academic year 2020/2021
  
Statistical Thermodynamics - AP403002
Title: Statistical Thermodynamics
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: summer
Points: summer s.:0
E-Credits: summer s.:0
Examination process: summer s.:
Hours per week, examination: summer s.:3/0, other [HT]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: English
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Malijevský Alexandr prof. Mgr. Ph.D., DSc.
Heyda Jan doc. RNDr. Mgr. Ph.D.
Bendová Magdalena Ing. Ph.D.
Classification: Chemistry > Physical Chemistry
Interchangeability : P403002
Examination dates   Schedule   
Annotation -
The purpose of the Ph.D. student course is to present the key chapters of statistical mechanics and to illustrate its advanced application on a description of thermodynamics and structure properties of model many-body interacting systems.
Last update: Matějka Pavel (03.09.2019)
Aim of the course -

Students will understand fundamentals of statistical mechanics and will be able to predict a macroscopic behaviour of thermodynamic systems from the knowledge of interaction properties of the microscopic constituents.

Last update: Pátková Vlasta (16.11.2018)
Course completion requirements -

Oral exam.

Last update: Pátková Vlasta (16.11.2018)
Literature -

R: B. Widom: Statistical Mechanics (A concise introduction for chemists), Cambridge university press, Cambridge 2002.

A: J.-P. Hansen a I.R. McDonald: Theory of simple liquids, 3rd Edition, Elsevier, Amsterdam 2006.

Last update: Pátková Vlasta (16.11.2018)
Teaching methods -

Lecture or consultations.

Last update: Pátková Vlasta (16.11.2018)
Syllabus -

1) Statistical mathematics, fundamentals. Mean, fluctuation, correlation.

2) Statistical distributions. Binomial, Poisson, normal.

3) The fundamental theorem of statistical mechanics. Ergodic hypothesis. Time average versus ensemble average.

4) Microcanonical ensemble. Statistical entropy. Conditions of phase equilibrium.

5) Canonical ensemble. Boltzmann factor. Partition function.

6) Virial and equipartition theorem.

7) Grand-canonical ensemble.

8) Ideal crystal.

9) Non-interacting molecules. Vibration and rotation.

10) Non-ideal gas. Correlation functions.

11) Integral theory.

Last update: Matějka Pavel (04.09.2019)
Learning resources -

None.

Last update: Pátková Vlasta (16.11.2018)
Entry requirements -

Physical chemistry (bachelor courses)

Last update: Pátková Vlasta (16.11.2018)
 
VŠCHT Praha