|
|
|
||
The course deals with methods for approximation of functions, derivatives and integrals, with methods for solving linear and nonlinear algebraic equations, with methods for solving ordinary/partial differential equations with initial/boundary conditions, and with methods for experimental data evaluation. By learning these numerical methods students will gain insight into problem formulation and develop the ability to derive a problem solution and estimate its accuracy.
Last update: Fialová Jana (15.01.2018)
|
|
||
Students will be able to formulate mathematical models using algebraic or differential equations. They will gain an overview of the commonly used numerical methods and they will learn how to determine the accuracy of numerical solutions. Last update: Fialová Jana (15.01.2018)
|
|
||
individual project - assesment, written exam, oral exam Last update: Dubcová Miroslava (16.02.2018)
|
|
||
R: M. Kubíček, M. Dubcová, D. Janovská, Numerical Methods and Algorithms, http://www.vscht.cz/mat/Ang/NM-Ang/NM-Ang.pdf A: J. F. Epperson: An Introduction to Numerical Methods and Analysis,Wiley, New York, 2002, ISBN 0-471-31647-4
Last update: Červená Lenka (29.08.2024)
|
|
||
Lectures and exercise classes. Last update: Fialová Jana (15.01.2018)
|
|
||
1. Interpolation. 2. Interpolation by spline functions. 3. Difference formulas, quadrature formulas. 4. Methods of linear algebra. 5. Systems of nonlinear equations. Newton method. 6. Initial value problem for ODEs. One-step methods. 7. Stiff systems. Multistep methods. Stability. Error estimation. 8. Boundary value problem for ODEs. Finite-difference methods. 9. Boundary value problem for ODEs. Shooting methods. 10. Finite-difference methods for linear parabolic PDEs. 11. Finite-difference methods for nonlinear parabolic PDEs. 12. Methods of lines. 13. Finite-difference methods for elliptic PDEs. 14. Linear regression. Last update: Červená Lenka (29.08.2024)
|
|
||
Students are expected to have either completed the prerequisite course Mathematics B or possess the equivalent knowledge prior to enrolling in the course. Last update: Borská Lucie (13.05.2019)
|
|
||
Mathematics A Last update: Borská Lucie (06.05.2019)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1 | 28 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |
Coursework assessment | |
Form | Significance |
Regular attendance | 10 |
Report from individual projects | 20 |
Examination test | 40 |
Oral examination | 30 |