|
|
|
||
The subject presents basic principles of image processing and applications of functional transforms in image analysis, A special attention is paid to processing of colors, image segmentation, rejection of noise components, image enhancement, data compression, pattern recognition and feature classification including estimation of accuracy and cross-validation errors. Applications include processing of images related to chemistry, material engineering, biochemistry, and biomedicine.
Last update: Procházka Aleš (20.01.2018)
|
|
||
Student will know how:
Last update: Procházka Aleš (20.01.2018)
|
|
||
Evaluation is based upon the individual project Last update: Procházka Aleš (20.01.2018)
|
|
||
Z - Gonzales R., Woods R., Digital Image Processing, Prentice Hall, 2008 D - I.T. Jolliffe: Principal Component Analysis, 2nd ed., Springer-Verlag, New York, 2002 D - http://basic-eng.blogspot.com/2005/12/object-detection-using-hough-transform.html Last update: Procházka Aleš (20.01.2018)
|
|
||
During studies of this subject it is necessary either to submit the own paper using image processing methods in the area of own research or to evaluate an individual project. Last update: Procházka Aleš (20.01.2018)
|
|
||
1. Fundamentals of computational, programming and visualization system MATLAB / SIMULINK 2. Mathematical representation of multidimensional signals, image coding 3. Selected numerical methods for image processing: interpolation, approximation 4. Two-dimensional discrete Fourier transform in image analysis and resolution changes 5. Multi-dimensional digital filters in image-denoising 6. Gradient methods in image enhancement 7. Selected methods of image segmentation, feature extraction and classification 8. Discrete wavelet transform in data compression image denoising 9. Computational intelligence in microscopic data analysis and classification 10. Spatial data visualization and processing 11. Selected methods of biomedical multidimensional data processing 12. CASE STUDY 1: Image spectral analysis 13. CASE STUDY 2: Digital filtration and enhancement of multidimensional signals 14. CASE STUDY 3: Feature detection and classification of image components Last update: Procházka Aleš (20.01.2018)
|
|
||
http://uprt.vscht.cz/prochazka/pedag/lectures/ATHENS_DSP.pdf http://uprt.vscht.cz/prochazka/pedag/lectures/SP0_MATLAB_2006EN.pdf http://basic-eng.blogspot.com/2005/12/object-detection-using-hough-transform.html Last update: Procházka Aleš (20.01.2018)
|
|
||
Mathematics 1, 2 Last update: Procházka Aleš (20.01.2018)
|
Coursework assessment | |
Form | Significance |
Defense of an individual project | 100 |