SubjectsSubjects(version: 965)
Course, academic year 2024/2025
  
Fundamentals of Computer Simulations - M105001
Title: Základy počítačových simulací
Guaranteed by: Department of Inorganic Technology (105)
Faculty: Faculty of Chemical Technology
Actual: from 2021
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:1/3, C+Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Additional information: http://předmět je vyučován pouze v zimním semestru
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Fíla Vlastimil prof. Dr. Ing.
Kodým Roman Ing. Ph.D.
Interchangeability : N105005, Z105005
This subject contains the following additional online materials
Annotation -
This subject is an introduction to the field of universal simulation programs applicable in design of new chemical processes in putting the accent on practical use of existing software. The problem-oriented approach is applied in this subject, i.e. the student will solve the balance and simulation tasks arising in the description of behaviour of technological units and their systems using universal simulation software (Aspen Plus).
Last update: Pátková Vlasta (04.01.2018)
Course completion requirements -

For assessment attendance at 60% of exercises and lectures or the elaboration of individual project.

The examination has written form.

Last update: Fíla Vlastimil (18.02.2018)
Literature -

R.Smith: Chemical Process: Design and Integration, John Wiley & Sons Inc, 2005, ISBN 9780471486817.

V. J. Law: Numerical Methods for Chemical Engineers Using Excel, VBA, and MATLAB,CRC Press, 2013, ISBN 9781466575349.

B. V. Liengme, D. J. Ellert: A Guide to Microsoft Excel 2007 for Scientists and Engineers,2009, ISBN 9780123746238.

Last update: Pátková Vlasta (04.01.2018)
Requirements to the exam -

For assessment attendance at 60% of exercises and lectures is necessary. The elaboration of individual project is necessitated in case of unsatisfied attendance at lectures and exercises.

The exam has written form.

Last update: Fíla Vlastimil (18.02.2018)
Syllabus -

1. Basics of numerical methods - approximation, calculation of the definite integral and derivation. Utilization of advanced functions of the EXCEL program.

2. Basics of numerical methods - solving of systems of linear and nonlinear equations. Utilization of advanced functions of the EXCEL program.

3. Basics of numerical methods - solving of systems of ordinary differential equations (initial and boundary condition). Utilization of advanced functions of the EXCEL program.

4. MATLAB - language syntax, procedures for solving simple tasks from the field of process simulation, basic library procedures - calculation of the definite integral and derivation.

5. MATLAB - procedures for solving simple tasks from the field of process simulation, basic library procedures for solving of systems of linear, nonlinear and ordinary differential equations.

6. Types of projects in chemical process design, hierarchy in design of chemical processes.

7. The role of simulation in design of new or optimization of existing chemical processes, structure of universal simulation programs, available software overview.

8. Physico-chemical data in universal simulation programs, choice of thermodynamic model, state behavior, phase equilibria, electrolytes, estimation of physico-chemical properties.

9. Material and energy streams, solids, pseudo-components.

10. Balance scheme development, mass and energy balances, recycles.

11. Simulation, sequential and global approach, design specification, parametric study.

12. Models of chemical reactors in simulation programs.

13. Models of separators for homogeneous and heterogeneous mixtures.

14. Heat management in chemical processes, heat exchangers and heat exchanger networks.

Last update: Pátková Vlasta (04.01.2018)
Learning resources -

Supporting materials with basic numerical methods description.

Last update: Fíla Vlastimil (21.02.2018)
Learning outcomes -

Students will be able to:

  • apply the advanced functions of program EXCEL solving the basic chemical engineering tasks
  • develop the mass balance schema of process on the base of technological schema
  • apply the Aspen Plus software in simulation of chemical technologies

Last update: Pátková Vlasta (04.01.2018)
Entry requirements - Czech

Pro zápis tohoto předmětu je nutno mít minimálně zapsány předměty N403011 a N409002

Last update: Pátková Vlasta (04.01.2018)
Registration requirements -

Physical Chemistry I, Chemical Engineering I

Last update: Pátková Vlasta (04.01.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 0.5 14
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1.5 42
4 / 4 112 / 112
 
VŠCHT Praha