|
|
|
||
The main aim of education in Biology of Man is to obtain the basic information from biology of man and clinical genetics; it means to be able to understand ontogenesis, inheritance laws, molecular and/or genetic nature of processes in organism, individuality of every person (on molecular level, physical and mental level as well as individuality of interaction with environment ...) and consider possibilities in the development of new drugs.
Last update: Hladíková Jana (03.01.2018)
|
|
||
Students will be able to:
Last update: Hladíková Jana (03.01.2018)
|
|
||
R:Otová B., Mihalová R.: Základy biologie a genetiky člověka, Karolinum, Praha 2012, ISBN 978-80-246-2109-8 A:Otová B. a kolektiv: Lékařská biologie a genetika I. díl. Karolinum, Praha 2008, ISBN 978-80-246-1594-3 A:Kohoutová M. a kolektiv: Lékařská biologie a genetika II. díl. Karolinum, Praha 2012, ISBN 978-80-246-1873-9 A:Kočárek E.: Genetika. Scientia, Praha 2008, ISBN 978-80-869-6036-4 Last update: Hladíková Jana (03.01.2018)
|
|
||
1. Prokaryote, Eukaryote. Eukaryotic cell; Cell cycle and its regulation; Cell signalization. Tissue; Organism. 2. J. G. Mendel and his laws of inheritance; Gene, Alleles, Genotype, Phenotype; Monogenic inheritance; Interaction of non-allelic genes; Multifactorial inheritance. 3. Molecular and biochemical reasons of inherited diseases; Prevention and treatment; Pedigree analysis; Pharmacogenetics. 4. Cytogenetics; Human karyotype; Chromosome number and structure; techniques of examination; Disorders of the autosomes and sex chromosomes; in vitro cultivation of cells. 5. Mitosis; Meiosis and its disturbances; Nondisjunction; Examples of syndromes; Gametogenesis. 6. Genetic linkage; crossing-over; genetic mapping (indirect and physical); Haplotype; Application of genetic linkage - Indirect DNA diagnostics. 7. Genetics of embryonic development; Sex differentiation and its disturbances; Apoptosis; Ontogenesis; Molecular aspects of Aging. 8. Molecular genetics; DNA structure and function; Replication; RNA (mRNA, tRNA, rRNA) - structure and function; Transcription and RNA processing; Ribosome; Genetic code; Translation. 9. Gene structure and function; Nucleic acid polymorphisms; Gene polymorphisms; SNP; Gene mutations - types and effects; Direct and indirect methods of DNA diagnostics. Mutagenic and teratogenic factors of environment. 10. Multifactorial inheritance; Heritability; Diseases; Prevention and treatment - life style, pharmacotherapy, nutrition. 11. Population; Castle-Hardy-Weinberg law; Factors affecting C-H-W equilibrium - mutations, selection; Genetic drift and gene flow. Consanguinity; Inbreeding; Evolution of human species - macro- and micro-evolution 12. Immunogenetics; Immunity - non-specific, specific; Antigenes; Antibodies; Blood groups - genetics and clinical importance; Haemolytic disease of the newborn; B and T lymphocytes; Function of immunocompetent cells; Cytokines; Immunoglobulin -structure and function; Histocompatibility - Major histocompatibility complex - HLA locus of man. 13. Transplantation; Transplantation antigenes; Transplantation principles; Haplotype; GVHR (transplantation of bone marrow); Immunotolerance; Immunodeficiency; Immunosuppression; Immunity and tumours. 14. Oncogenetics; Protooncogenes, tumour-suppressor genes, mutator genes; Benign and malignant tumours; Angiogenesis; Metastasis; Cancer families; Cytogenetic analysis of tumour cells; New methods of treatment according to genetic Last update: Hladíková Jana (03.01.2018)
|
|
||
http://tresen.vscht.cz/kot/blog/studium/bakalarske/biologie-cloveka Last update: Hladíková Jana (03.01.2018)
|
|
||
none Last update: Hladíková Jana (03.01.2018)
|