SubjectsSubjects(version: 963)
Course, academic year 2024/2025
  
High Resolution Spectroscopy - P402016
Title: Vysocerozlišená spektroskopie
Guaranteed by: Department of Analytical Chemistry (402)
Faculty: Faculty of Chemical Engineering
Actual: from 2020
Semester: winter
Points: winter s.:0
E-Credits: winter s.:0
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, other [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Urban Štěpán prof. RNDr. CSc.
Kania Patrik Ing. Ph.D.
Koucký Jan Ing. Ph.D.
Classification: Chemistry > Analytical Chemistry
Is interchangeable with: AP402016
Annotation -
The course focuses on advanced methods of infrared, THz and MW spectroscopies, which will be taught with a common theoretical background. At the same time, advanced experimental methods will be discussed to distinguish high-resolution spectroscopy from other spectroscopies. Simultaneously with the theoretical interpretation, practical demonstrations in specialized laboratories of the University of Chemistry and Technology and of the Academy of Sciences of the Czech Republic will take place.
Last update: Kania Patrik (02.09.2024)
Course completion requirements -

Exam

Last update: Kania Patrik (02.09.2024)
Literature -

Recommended:

  • W. Gordy, R. L. Cook. Microwave Molecular Spectra. New York: John Wiley & Sons, 1984, s. ISBN 0-471-08681-9.
  • H. Kroto. Molecular Rotation Spectra. : Dover Pubns, 1992, s. ISBN 978-0486672595.
  • M. Hollas. High Resolution Spectroscopy. : Wiley, 2013, s. ISBN 978-0470844168.

Last update: Kania Patrik (02.09.2024)
Syllabus -

1. Introduction, basic concepts, spectroscopy types according to the quantum mechanical model and energy range, quantum states, Einstein theory of spectral transitions

2. State populations, radiation transition equation and its special cases

3. Spectral lines width, causes of spectral line width expansion, resolution of lines

4. Molecular Hamiltonian, Born-Oppenheimer approximation, quantum chemistry and electron spectra, rotational and vibrational Hamiltonian, rotational, rovibrational, and rovibronic spectra

5. Fine and hyperfine structure of quantum states, quadrupole splitting, hyperfine magnetic nuclear spin-orbital interactions, magnetic nuclear spin-spin interactions, spin statistical weights of levels, Pauli's Principle

6. Rotational spectroscopy, Hamiltonian and its special cases, selection rules, symmetric tops

7. Asymmetric tops, hyperfine-rotational transitions, determination of molecular geometry, decimetric spectroscopy

8. Vibration-rotation Hamiltonian and spectra, selection rules for rotation-vibration transitions, hyperfine structure of rotation-vibration transitions

9. Vibronic spectra

10. Doppler limited spectroscopy and sub-Doppler spectroscopy, high and ultra-high resolution, Lamb dip and molecular beams

11. Planck and monochromatic sources of radiation, lasers

12. Tunable monochromatic sources of radiation, laser diodes, clystrones, carcinotrones, Schottky diodes, duplication and other multiplication of photon energy

13. Application of high resolution spectroscopy I

14. Application of high resolution spectroscopy II

Last update: Kania Patrik (02.09.2024)
Registration requirements -

Subject that should be preceded by:

Molecular Spectroscopy and / or Molecular Physical Chemistry and Symmetry.

Quantum chemistry

and some courses of Physics and Mathematics

Last update: Záruba Kamil (14.09.2018)
 
VŠCHT Praha