SubjectsSubjects(version: 952)
Course, academic year 2021/2022
  
Molecular Modelling - S402037
Title: Molecular Modelling
Guaranteed by: Department of Analytical Chemistry (402)
Faculty: Faculty of Chemical Engineering
Actual: from 2021 to 2021
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:1/2, Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: English
Teaching methods: full-time
Teaching methods: full-time
Level:  
Is provided by: AM402014
For type:  
Additional information: http://Lectures and seminars
Guarantor: Bouř Petr prof. RNDr. CSc.
Interchangeability : N402037
Is interchangeable with: N402037
Annotation
Students will obtain basic knowledge of quantum-chemical principles, molecular dynamics, and computationas in chemistry, Spectroscopic methods and properties are emphasized, such as NMR and vibrational spectroscopy. The lecture is completed by exercises with computers.
Last update: Bouř Petr (11.12.2012)
Aim of the course

Students will see how a molecular program and quantum chemical program works, will be able to perform basis molecular dynamics and quantum mechanics computations, and will obtain basic knowledge about the Linux operation system.

Last update: Bouř Petr (11.12.2012)
Literature

Z: P. Bouř, Základy kvantových výpočtů molekul http://hanicka.uochb.cas.cz/~bour/prednaska/skripta.pdf

Z: manual www.gaussian.com

D: A. Szabo, N. S. Ostlund: Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory

D: P. W. Atkins, R. S. Friedman, Molecular Quantum Mechanics

Last update: Bouř Petr (26.06.2013)
Learning resources

manual www.gaussian.com

Last update: VED402 (14.08.2013)
Syllabus -

Overview of ab initio methods useful for computation of molecular properties will be given, with practical examples on computers. The topics include:

1. Classical and quantum concepts of molecular modelling

2. Ab initio methods and the Schrödinger equation

3. Basic axioms of quantum mechanics

4. Prediction of molecule properties from wavefunction

5. Approximate computational approaches in quantum mechanics

6. Density functional methods

7. Electromagnetic molecular properties

8. Energy minimalization, conformer averaging

9. Conformation analysis

10. Simulation of vibrational, optical, and NMR spectral properties

11. Prediction of protein structure, sequence analysis and protein structure

12. Solvent models for quantum computations

13. Applications of molecular modelling to new structural design

Last update: Bouř Petr (10.12.2012)
Entry requirements

Basic mathematical and physical knowledge

Last update: VED402 (14.08.2013)
Registration requirements

Basic mathematical and physical knowledge

Last update: Bouř Petr (26.06.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 0.5 14
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
4 / 4 112 / 112
Coursework assessment
Form Significance
Examination test 100

 
VŠCHT Praha