Language selection
  • čeština
  • english
User
  • Anonym

    LLL programme details

    close

    Informace pro uchazeče do bakalářského studia, kteří nedělají přijímací zkoušky:

    • Vysvětlení symbolů uvedených u přihlášky do bakalářského studia najdete zde: Symboly
    • Maturitní vysvědčení nahrajte k přihlášce do 17. 6. 2025. Pro distanční zápis musí být maturitní vysvědčení v konvertované podobě
    • 17. 6. 2025 - 24. 6. 2025 zpracování výsledků Přijímacího řízení - v té době již nemusíte vidět předběžné výsledky.
    • Rozhodnutí o výsledku přijímacího řízení bude zasláno 24. 6. 2025.
    • Odvolání proti nepřijetí ke studiu lze podat až po doručení Rozhodnutí o nepřijetí, které obdržíte elektronicky v systému SIS.

    Dotazy Vám zodpoví děkanát fakulty, kam jste si podali přihlášku.

    Advanced Data Analysis Methods and Neural Networks: Applications in Practice (C-K446-0002)

    Advanced Data Analysis Methods and Neural Networks: Applications in Practice
    full-time
    Czech
    "The course offers participants a comprehensive insight into advanced data analysis methods and neural networks and their practical utilization. It includes sophisticated data analysis techniques, such as cluster analysis and pattern recognition using neural networks.

    Participants will learn to apply principal component analysis, which enables the identification of key characteristics of data sets and the reduction of their dimensionality. They will also become familiar with algorithms such as support vector machine (SVM) and k-nearest neighbors, which are suitable for solving classification problems.

    In the course, participants will also be introduced to deep neural networks with an emphasis on time series prediction and analysis of multidimensional data. They will learn about a variety of currently used architectures of deep neural networks and how to apply them to analyze their own datasets.

    An important part of the course is validation and evaluation of classification and prediction accuracy using neural networks. Participants will learn how to properly set up and evaluate performance metrics of their models and how to effectively utilize various validation and optimization techniques.

    Overall, the course enables participants to gain a deeper understanding of advanced data analysis methods and neural networks and acquire practical skills for their application in various domains, from industrial applications to scientific research. This equips participants with the necessary knowledge and skills for successful work in the field of data analysis and artificial intelligence."
    Advanced Data Analysis Methods and Neural Networks: Applications in Practice
    Introduction to Cluster Analysis and Selected Cluster Analysis Methods 1: k-nearest neighbors, k-means, DBSCAN
    Application of selected classification methods using the Scikit-learn library and their comparison

    Hierarchical Clustering (Dendrogram) and Selected Cluster Analysis Methods 2: Self-Organizing Maps
    Application of selected classification methods using the sklearn-som or minisom library and their comparison

    Introduction to Neural Networks, Network Learning, Gradient Methods, Multi-Layer Perceptron (MLP)
    MLP - Universal Approximator, Neural Network Learning, Classification and Regression

    Application of Neural Networks for Time Series Processing
    Time Series Prediction

    Application of Neural Networks for Image Data Processing
    Issues in classification, object detection, tracking

    Use Case - Demonstration of Workflow in Processing a New Dataset
    Example of a Regression Dataset

    Use Case - Demonstration of Workflow in Processing a New Dataset
    Example of a Classification Dataset

    Creating Automatic Reports from Processed Data
    Automation of Report Generation with Results
    50
    basics of Python programming
    podání přihlášky a zaplacení účastnického poplatku

      • shrink expand
        aktivní účast
        Osvědčení o absolvování programu
        nejsou uvedeny
      • shrink expand
        Vrba Jan Ing. Ph.D.
        Department of Mathematics, Informatics and Cybernetics
        Department of Mathematics, Informatics and Cybernetics
        Advanced Data Analysis Methods and Neural Networks: Applications in Practice
        Steinbach Jakub Ing.
        Vrba Jan Ing. Ph.D.
      • shrink expand
        2024/2025
        summer semester
        17.03.25
        1
        32 hours
        8 lekcí po 4 hodinách = 32 hodin
      • shrink expand
        14900 Kč / course
      • shrink expand
        On-line
        Steinbach Jakub Ing.
        Jakub.Steinbach@vscht.cz
        220443773
        01.05.2024 - 30.03.2025