PředmětyPředměty(verze: 963)
Předmět, akademický rok 2013/2014
  
Neuronové sítě - D445009
Anglický název: Neural Networks
Zajišťuje: Ústav počítačové a řídicí techniky (445)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2012 do 2013
Semestr: letní
Body: letní s.:0
E-Kredity: letní s.:0
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:0/0, Jiné [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Úroveň:  
Poznámka: předmět je určen pouze pro doktorandy
student může plnit i v dalších letech
Garant: Procházka Aleš prof. Ing. CSc.
Termíny zkoušek   Rozvrh   
Anotace -
Předmět je zaměřen na problematiku počítačové inteligence a strojového učení včetně konstrukce matematických modelů neuronových sítí a jejich optimalizaci z hlediska potřeb zpracování signálů a adaptivního potlačování jejich rušivých složek. Zvláštní pozornost je dále věnována užití umělých neuronových sítí pro klasifikaci komponent signálů a obrazů a dále pro rozpoznávání vzorů. Vybrané případové studie presentované ve výpočetním systému MATLAB jsou zaměřené na analýzu biomedicínských a inženýrských dat.
Poslední úprava: Procházka Aleš (05.01.2018)
Literatura -

Z: S. Haykin: Neural Networks, Prentice Hall, 1999, ISBN 0132733501

Z: S. Samarasinghe: Neural Networks for Applied Science and Engineering, CRC Press, 2016

D: Vaseghi S.V.: Multimedia Signal Processing, Wiley, 2007

D: WIKIBOOK: Artificial Neural Networks, https://en.wikibooks.org/wiki/Artificial_Neural_Networks, 2018

Poslední úprava: Procházka Aleš (05.01.2018)
Sylabus

1. Metody počítačové inteligence ve zpracování dat

2. Architektura umělých neuronových sítí, jejich modelování a optimalizace v prostředí systému MATLAB

3. Učení a verifikace učícího procesu

4. Adaptivní lineární element a jeho využití pro potlačování rušivých složek signálů

5. Vícevrstvé dopředné a rekurentní sítě v predikci časových řad

6. Konstrukce matice vzorů a její využití pro klasifikaci dílčích komponent signálů a obrazů

7. Neuronové sítě s topologií, alternativní metody klasifikace dat

8. Strojové učení, rozpoznávání vzorů

9. Užití neuronových sítí ve zpracování obrazů

10. Neronové sítě s hloubkovým učením

11. Vybrané aplikace adaptivního zpracování dat, neuronové sítě v robotice

12: CASE STUDY 1: Potlačování rušivých složek reálných dat

13. CASE STUDY 2: Predikce chování dat

14. CASE STUDY 3: Extrakce vlastní a klasifikace v biomedicíně

Poslední úprava: Procházka Aleš (05.01.2018)
 
VŠCHT Praha