Podmínky zakončení předmětu (Další požadavky na studenta) -
Zápočet může být studentovi udělen na základě jeho účasti na praktických cvičeních a odevzdaných domácích úkolů v průběhu semestru. Případně může student na konci semestru složit test, v němž dosáhne minimálně 60 % požadovaného skóre. Minimální požadovaná účast na seminářích je 75 %. Podrobnosti budou dohodnuty s vyučujícím semináře na začátku semestru.
Poslední úprava: Koťátková Stránská Pavla (12.09.2023)
Credit can be awarded to student based on his participation in practical exercises and submitted homework during the semester. Alternatively student can pass a test at the end of the semester, with minimum required score of 60%. The minimum required attendance rate to seminars is 75%. The details will be agreed upon with the seminar instructor at the beginning of the semester.
A credit is required to allow a student to take the final exam. The final exam will cover both, the theory and the practical exercises. The exam will be in written form but can be complemented by oral examination.
Poslední úprava: Botek Marek (17.01.2020)
Literatura -
Z: BUDÍKOVÁ, M., KRÁLOVÁ, M., MAROŠ, B. Průvodce statistickými metodami. Praha: Grada Publishing, 2010.
D: HEBÁK, P., HUSTOPECKÝ, J. Vícerozměrné statistické metody 1. Praha: Informatorium. 2006.
D: HEBÁK, P., HUSTOPECKÝ, J., MALÁ, I. Vícerozměrné statistické metody 2. Praha: Informatorium. 2005.
D: HINDLS, R. a kol. Statistika pro ekonomy. Praha: Profesional Publishing. 2007.
Poslední úprava: Fialová Jana (14.01.2020)
R: LIND, D., MARCHAL, W., WATHEN, S. Statistical Techniques in Business and Economics, (16th Edition). McGraw-Hill Education 2015. ISBN-13: 978-0078020520.
R: TRIOLA, M., F. Essentials of Statistics (5th Edition). Pearson Education 2015. ISBN-13: 978-0321924599.
R: LEVINE, SZABAT, STEPHAN (2016), Business Statistics: A First Course. New York: Pearson Global Edition.
R: STUDENMUND, A.H. Using econometrics: A practical guide. New York: Pearson Global Edition, 2017. ISBN: 978-01-3136773-9.
A: ZÁŠKODNÝ, Přemysl (2012), The Principles of Probability and Statistics (Data Mining Approach). Praha: Curriculum.
6. Asociace mezi ordinálními a nominálními proměnnými. Kontingenční tabulky, Pearsonův chí-kvadrát test jako test nezávislosti.
7. Úvod do analýzy rozptylu. Předpoklady pro 1-way ANOVA. Neparametrická jednocestná ANOVA (Kruskal-Wallisův test). Vícenásobné porovnávání.
8. Korelační analýza I. Grafické metody, Pearsonův a Spearmanův korelační koeficient. Testy významnosti.
9. Korelační analýza pro nenormální data: biseriální a tetrachorická korelace.
10. Korelační analýza III. Vícerozměrná korelace: párová, násobná, parciální korelace.
11. Úvod do regresní analýzy I. Korelace vs. kauzalita. Jednoduchý lineární regresní model, testy významnosti koeficientů, F-test, koeficient determinace. LRM v Gretl.
12. Úvod do regresní analýzy II. Nelinearity v jednoduchém regresním modelu (logaritmické transformace, polynomy). Vyhodnocení a interpretace výsledků, možné problémy.
13. Metody vícerozměrné analýzy. Shluková analýza, faktorová analýza, analýza hlavních komponent. Aplikace v marketingu.
14. Závěrečná rekapitulace, konzultace.
Poslední úprava: Koťátková Stránská Pavla (12.09.2023)
1. Repetition of the basics of statistics I Random variable and probability. Probability distributions. All in practice.
2. Repetition of the basics of statistics II. Descriptive statistics. Statistical inference - point and interval estimates. Hypothesis testing, basic parametric tests (equality of mean, variance, etc.). All in practice.
3. Repetition of the basics of statistics III. Basic non-parametric tests: Mann-Whitney, Wilcoxon rank-sum, sign test, etc.
4. Normal distribution and its importance. Standard tests of normality: Pearson Chi-squared test, Shapiro-Wilk test, Kolmogorov-Smirnov test.
6. Association between ordinal and nominal variables. Contingency tables, Pearson Chi-squared test as test of independence.
7. Introduction to analysis of variance. Assumptions for 1-way ANOVA. Non-parametric one-way ANOVA (Kruskal-Wallis test). Multiple comparison.
8. Correlation analysis I. Graphical methods, Pearson and Spearman correlation coefficient. Tests of significance.
9. Correlation analysis for non-normal data: biserial and tetrachoric correlation.
10. Correlation analysis III. Multivariate correlation: pair, multiple, partial correlation.
11. Introduction to Regression analysis I. Correlation vs. causality. Simple linear regression model, tests of significance of coefficients, F-test, coefficient of determination. LRM in Gretl.
12. Introduction to Regression analysis II. Nonlinearities in simple regression model (logarithmic transformations, polynomials). Evaluating and interpreting the results, possible problems.
13. Methods of multivariate analysis. Cluster analysis, factor analysis, principal component analysis. Applications in marketing.