PředmětyPředměty(verze: 965)
Předmět, akademický rok 2022/2023
  
Matematické modely chemických a farmaceutických procesů - P111009
Anglický název: Mathematical Models of Chemical and Pharmaceutical Processes
Zajišťuje: Ústav organické technologie (111)
Fakulta: Fakulta chemické technologie
Platnost: od 2020
Semestr: letní
Body: letní s.:0
E-Kredity: letní s.:0
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:0/0, Jiné [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Úroveň:  
Poznámka: předmět je určen pouze pro doktorandy
student může plnit i v dalších letech
Garant: Zámostný Petr prof. Ing. Ph.D.
Anotace -
Předmět je zaměřen na seznámení studentů doktorského studia technikami matematického modelování a s využitím matematických modelů pro studium, analýzu a optimalizaci chemických a farmaceutických procesů. Předmět si klade za cíl jednak poskytnout přehled technik používaných v matematickém modelování, a také na jednoduchých příkladech prakticky demonstrovat implementaci, použití a vlastnosti různých typů modelů.
Poslední úprava: Fialová Jana (24.04.2020)
Podmínky zakončení předmětu (Další požadavky na studenta) -

Vypracování projektu založeného na implementaci zadaného matematického modelu a jeho obhajoba.

Poslední úprava: Fialová Jana (24.04.2020)
Literatura -

Z: Ingham J., Dunn I. J., Heinzle E., Přenosil J. E.: Chemical Engineering Dynamics - Modelling with PC Simulation, VCH, Wienheim 1994.

D: Hickey A. J., Ganderton D: Pharmaceutical Process Engineering, Marcel Dekker 2001.

D: Fogler H. S.: Elements of Reaction Engineering, Prentice Hall, New Jersey 2000.

Poslední úprava: Fialová Jana (24.04.2020)
Sylabus -

1. Matematické modely, rozdělení modelů

2. Empirické a mechanistické modely - rozdíl v interpretaci

3. Modely proudění tekutin, ideální a neideální tok

4. Modely sdílení tepla a hmoty

5. Modely složitějších reakčních systémů a systémů s heterogenní katalýzou

6. Modelování procesů zahrnujících partikulární látky

7. Základy optimalizace

8. Identifikace parametrů matematických modelů

9. Posouzení adekvátnosti matematických modelů

10. Umělé neuronové sítě, fuzzy modely

11. Probabilistické modely

Poslední úprava: Fialová Jana (24.04.2020)
Výsledky učení -

Studenti budou umět:

  • zvolit vhodný typ matematického modelu pro řešení problému
  • sestavit bilanční rovnice hmoty, energie a hybnosti pro složitější dynamické systémy
  • implementovat jednodušší matematické modely v prostředí Matlab

Poslední úprava: Fialová Jana (24.04.2020)
 
VŠCHT Praha