PředmětyPředměty(verze: 965)
Předmět, akademický rok 2024/2025
  
Mathematics for chemical engineers - S413032
Anglický název: Mathematics for chemical engineers
Zajišťuje: Ústav matematiky (413)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2021
Semestr: zimní
Body: zimní s.:5
E-Kredity: zimní s.:5
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/2, Zk [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: zrušen
Jazyk výuky: angličtina
Způsob výuky: prezenční
Úroveň:  
Je zajišťováno předmětem: AM413007
Garant: Janovská Drahoslava prof. RNDr. CSc.
Je záměnnost pro: AM413007
Termíny zkoušek   Rozvrh   
Anotace
Předmět navazuje na znalosti studentů získané v bakalářském studiu. Jeho hlavní náplní je studium diferenciálních rovnic a jejich soustav, dynamických systémů (kvalitativní teorie), dále stručný úvod do vektorové analýzy a teorie parciálních diferenciálních rovnic. Nedílnou součástí předmětu je procvičení teoretických matematických vědomostí na konkrétních příkladech z chemického inženýrství s využitím moderního softwaru.
Poslední úprava: TAJ413 (20.11.2012)
Podmínky zakončení předmětu (Další požadavky na studenta)

Studenti získají zápočet na zákldě vypracování šesti až deseti miniprojektů (počet úkolů dle obtížnosti).

Zkouška má písemnou a ústní část. Student může skládat ústní část zkoušky, získal-li ze zkouškové písemky alespoň 50 bodů ze 100 možných.

Poslední úprava: TAJ413 (20.11.2012)
Literatura

Z Turzík Daniel a kol.: Matematika II ve strukturovaném studiu, VŠCHT Praha, 2005.

Z Kubíček Milan, Dubcová Miroslava, Janovská Drahoslava: Numerické metody a algoritmy, VŠCHT Praha, 2005 (druhé vydání).

Z Klíč Alois, Dubcová Miroslava, Buřič Lubor: Soustavy obyčejných diferenciálních rovnic, kvalitativní teorie, dynamické systémy, VŠCHT Praha, 2009.

D Klíč Alois, Dubcová Miroslava: Základy tenzorového počtu s aplikacemi, VŠCHT Praha, 1998.

D R.A.Horn, Ch.R.Johnson: Matrix Analysis. Cambridge University Press 1999. ISBN 0-521-38632-2

Poslední úprava: TAJ413 (20.11.2012)
Metody výuky

Přednášky probíhají dle sylabu. Ne ně navazuje cvičení, kde jsou teoretické matematické znalosti aplikovány na konkrétní úlohy chemického inženýrství. K výpočtům je využíván Matlab, pro simulace chování dynamických systémů konkrétně "pplane".

Poslední úprava: TAJ413 (20.11.2012)
Požadavky ke zkoušce (Forma způsobu ověření studijních výsledků)

Během semestru vypracují studenti několik miniprojektů (jejich počet závisí na obtížnosti úlohy). Cvičící posoudí kvalitu zpracování a udělí studentovi zápočet. Bez zápočtu nemůže student konat zkoušku. Zkouška se skládá z písemné a ústní části. Podmínkou pro připuštění k ústní zkoušce je zisk minimálně 50ti bodů z písemky. Napíše-li student písemku na dostatečný počet bodů a neuspěje u ústní části, nemusí písemku opakovat.

Poslední úprava: TAJ413 (20.11.2012)
Sylabus -

1. Řešení soustavy lineárních algebraických rovnic. Inverzní matice. Vlastní čísla a vlastní vektory matice, zobecněné vlastní vektory.

2. Singulární hodnoty, singulární rozklad matice, řešeni soustavy lineárních rovnic ve smyslu nejmenších čtverců, normální rovnice.

3. Lineární a nelineární regrese.

4. Numerické řešení nelineárních rovnic, Newtonova metoda. Newtonova metoda pro soustavy nelineárních rovnic.

5. Implicitní funkce jedné i více proměnných, jejich derivace a grafy.

6. Numerické řešení obyčejných diferenciálních rovnic, počáteční úloha : Eulerova metoda. Rungovy-Kuttovy metody.

7. Numerické řešení obyčejných diferenciálních rovnic, okrajová úloha, metoda střelby.

8. Soustavy lineárních DR s konstantními koeficienty: Řešení lineárních soustav pomocí vlastních čísel, vlastních vektorů a zobecněných vlastních

vektorů.

9. Dynamiclé systémy, trajektorie soustavy, rovnovážné stavy, fázový portrét. Invariantní množiny, ω-limitní množiny trajektorií.

10. Fázové portréty lineárních soustav v R^1, R^2.

11. Soustavy nelineárních DR : Klasifikace rovnovážných stavů nelineárních soustav. Konstrukce fázových portrétů v rovině. Homokliniky a heterokliniky.

12. Základy vektorového a tenzorového počtu. Algebra operátoru nabla. Grennova věta.

13. Křivky. Křivkový integrál skalárního a vektorového pole. Potenciál.

14. Plošné integrály skalárního a vektorového pole. Gaussova a Stokesova věta.

Poslední úprava: JANOVSKD (19.01.2017)
Studijní opory

Poznámky k přednáškám - http://www.vscht.cz/mat/MCHI/PoznamkyMCHI.html

Poslední úprava: TAJ413 (20.11.2012)
Výsledky učení

Cílem předmětu je umožnit studentům zopakovat si a prohloubit znalosti získané v matematických kursech bakalářského studia. I když budou studenti v budoucnu pracovat v nejrůznějších oblastech chemie, měli by být schopni využít při formulaci, analýze a simulaci svých výsledků rigorózní matematické nástroje včetně nejmodernějšího dostupného softwaru

Poslední úprava: TAJ413 (20.11.2012)
Vstupní požadavky

Předpokládá se úspěšné absolvování předmětů Matematika I a II nebo Matematika A a B.

Výhodou je absolvování kursu z Numerických metod a Matematiky III.

Poslední úprava: TAJ413 (20.11.2012)
Zátěž studenta
Činnost Kredity Hodiny
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 0.5 14
5 / 5 140 / 140
Hodnocení studenta
Forma Váha
Aktivní účast na výuce 10
Obhajoba individuálního projektu 20
Zkouškový test 30
Průběžné a zápočtové testy 20
Ústní zkouška 20

 
VŠCHT Praha