PředmětyPředměty(verze: 963)
Předmět, akademický rok 2020/2021
  
Optimalizace nelineárních problémů - D413007
Anglický název: Non-linear Optimalization
Zajišťuje: Ústav matematiky (413)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2011 do 2020
Semestr: oba
Body: 0
E-Kredity: 0
Způsob provedení zkoušky:
Rozsah, examinace: 0/0, Jiné [HT]
Počet míst: zimní:neurčen / neurčen (neurčen)
letní:neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Úroveň:  
Poznámka: předmět je určen pouze pro doktorandy
student může plnit i v dalších letech
předmět lze zapsat v ZS i LS
Garant: Kubíček Milan prof. RNDr. CSc.
Vaněk Tomáš doc. RNDr. CSc.
Termíny zkoušek   Rozvrh   
Anotace
Extrémy funkcí reálných proměnných. Vázaný extrém, podmíněný extrém. Lineární programován. Nelineární programování, metody přímého hledání, metody gradientní, metoda Newtonova. Metody pro vázaný a omezený extrém. Základy dynamického programování. Vektorová optimalizace, konstrukce Paretovy množiny.
Poslední úprava: SMIDOVAL (14.03.2012)
Výstupy studia předmětu

Studenti budou umět: Pochopit a formulovat optimalizační úlohu. Řešit úlohu v jednoduchých případech, použít vhodný software ve složitějších případech. Klasifikovat úlohu a navrhnout řešení. Řešení zadaného projektu.

Poslední úprava: Kubíček Milan (13.10.2015)
Literatura

Kubíček M.: Optimalizace inženýrských procesů. SNTL Praha 1986. Další literatura individuálně.

Poslední úprava: Kubíček Milan (13.10.2015)
Sylabus

1. Formulace optimalizační úlohy.

2. Extrémy funkcí reálných proměnných - metody klasické analýzy.

3. Extrémy funkcí reálných proměnných - volný extrém, vázaný extrém.

4. Extrémy funkcí reálných proměnných - extrém s omezeními.

5. Lineární programování.

6. Simplexní metoda.

7. Nelineární programování.

8. Metody adaptivního hledání.

9. Gradientní metody.

10. Pokutové funkce.

11. Základy dynamického programování.

12. Problém dělení zdrojů.

13. Základy vektorové optimalizace.

14. Konstrukce Paretovy množiny.

Poslední úprava: Kubíček Milan (13.10.2015)
Studijní prerekvizity

Matematika I,II

Poslední úprava: Kubíček Milan (13.10.2015)
 
VŠCHT Praha