PředmětyPředměty(verze: 963)
Předmět, akademický rok 2020/2021
  
Optimalizace inženýrských procesů - N413011
Anglický název: Optimization of Engineering Processes
Zajišťuje: Ústav matematiky (413)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2020 do 2020
Semestr: zimní
Body: zimní s.:5
E-Kredity: zimní s.:5
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/2, Z+Zk [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Úroveň:  
Je zajišťováno předmětem: M413005
Garant: Kubíček Milan prof. RNDr. CSc.
Je záměnnost pro: M413005
Termíny zkoušek   Rozvrh   
Anotace -
Předmět je zaměřen na schopnost formulace optimalizační úlohy založené na matematickém modelu procesu. Jsou probrány metody klasické analýzy pro určení extrému s vazbami i omezeními. Jsou prezentovány základní metody lineárního i nelineárního programování, dynamického programování i vektorové optimalizace. Postupy jsou demonstrovány na inženýrských příkladech.
Poslední úprava: Kubíček Milan (20.11.2012)
Výstupy studia předmětu -

Studenti budou umět: Pochopit a formulovat optimalizační úlohu. Řešit úlohu v jednoduchých případech, použít vhodný software ve složitějších případech. Klasifikovat úlohu a navrhnout řešení.

Poslední úprava: Kubíček Milan (20.11.2012)
Literatura -

Z: Kubíček M.: Optimalizace inženýrských procesů. SNTL Praha 1986. ISBN 05-098-86

D: dodávána individuálně podle zadání projektu

Poslední úprava: Kubíček Milan (20.11.2012)
Metody výuky -

Přednáška, cvičení.

Poslední úprava: Kubíček Milan (20.11.2012)
Sylabus -

1. Formulace optimalizační úlohy.

2. Extrémy funkcí reálných proměnných - metody klasické analýzy.

3. Extrémy funkcí reálných proměnných - volný extrém, vázaný extrém.

4. Extrémy funkcí reálných proměnných - extrém s omezeními.

5. Lineární programování.

6. Simplexní metoda.

7. Nelineární programování.

8. Metody adaptivního hledání.

9. Gradientní metody.

10. Pokutové funkce.

11. Základy dynamického programování.

12. Problém dělení zdrojů.

13. Základy vektorové optimalizace.

14. Konstrukce Paretovy množiny.

Poslední úprava: Erudio (01.01.1999)
Studijní opory -

http://vydavatelstvi.vscht.cz/knihy/uid_isbn-80-7080-558-7/pages-img/005.html (přístupné pouze z domény vscht.cz)

Poslední úprava: Kubíček Milan (27.08.2013)
Studijní prerekvizity -

Matematika I, Matematika II.

Poslední úprava: Kubíček Milan (20.11.2012)
Zátěž studenta
Činnost Kredity Hodiny
Konzultace s vyučujícími 0.5 14
Obhajoba individuálního projektu 0.1 3
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Práce na individuálním projektu 0.5 14
Příprava na zkoušku a její absolvování 0.9 25
Účast na seminářích 1 28
5 / 5 140 / 140
Hodnocení studenta
Forma Váha
Aktivní účast na výuce 20
Obhajoba individuálního projektu 10
Zkouškový test 30
Průběžné a zápočtové testy 10
Ústní zkouška 30

 
VŠCHT Praha