PředmětyPředměty(verze: 963)
Předmět, akademický rok 2020/2021
  
Mathematical Modelling of Processes in Chem. Eng. - S409064
Anglický název: Mathematical Modelling of Processes in Chem. Eng.
Zajišťuje: Ústav chemického inženýrství (409)
Fakulta: Fakulta chemicko-inženýrská
Platnost: od 2011 do 2020
Semestr: letní
Body: letní s.:5
E-Kredity: letní s.:5
Způsob provedení zkoušky: letní s.:
Rozsah, examinace: letní s.:2/2, Zk [HT]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Stav předmětu: vyučován
Jazyk výuky: angličtina
Způsob výuky: prezenční
Způsob výuky: prezenční
Úroveň:  
Garant: Kosek Juraj prof. Dr. Ing.
Termíny zkoušek   Rozvrh   
Sylabus

1. Classification of models, methods and objectives of modeling. Basic concepts of modeling.

2. Building blocks of models: balances, theoretical plate, phase equilibria, flow through vessels.

3. Mechanical, chemical and phase equilibrium. Description of phase equilibria in systems liquid-vapor and liquid-liquid.

4. Processes in stationary state. Models of one-stage separation processes for multicomponent systems (flash, extraction).

5. Simulations of process dynamics. Heat exchangers - lumped parameter systems. Temperature controllers.

6. Dynamics of ideally mixed reactors. Reactor stability, control of temperature and composition of reaction mixture. Ideal controller for pressure.

7. Discontinuities in the description of processes. Treatment of stiff-problems. Dynamics of hydrodynamic flow.

8. Differential-algebraic equations. Batch distillation. Batch rectification.

9. Cascade of ideal mixers with and without backmixing. Axial dispersion. Mass transfer between phases.

10. Dynamic models of plate and packed column separators (extraction, absorption, distillation). Control of separators.

11. Processes governed by partial differential equations. Finite volume method and its application to problems of non-stationary diffusion and non-stationary heat transfer.

12. Heat exchangers - distributed parameter systems. Estimation of model parameters from time-dependent experimental data.

13. Application of Laplace transform to lumped and distributed parameter systems. Residence time distribution.

14. Moment of continuous and discrete distributions. Estimation of axial dispersion. Characteristics of particle size distribution.

Poslední úprava: KNOBLOCL (09.03.2012)
 
VŠCHT Praha