This course provides an in-depth exploration of the computational methods used in the field of drug discovery and development. It is tailored for students interested in pharmacology, medicinal chemistry, and computational biology. The course bridges the gap between theoretical concepts and their practical applications in the pharmaceutical industry. Emphasis is placed on understanding the pharmacodynamics of drugs, drug discovery methodologies, and the use of chemoinformatics in drug design.
Poslední úprava: Svozil Daniel (18.12.2023)
Podmínky zakončení předmětu (Další požadavky na studenta) -
Zápočet se uděluje na základě řešení problémů během seminářů.
Poslední úprava: Svozil Daniel (15.02.2024)
A credit is awarded based on the solution of problems during seminars.
Poslední úprava: Svozil Daniel (15.02.2024)
Literatura - angličtina
R: Leach A. R. - An Introduction to Chemoinformatics, Springer, 2007, ISBN 1402062907
R: Brown N. - In Silico Medicinal Chemistry: Computational Methods to Support Drug Design, RSC, 2015, ISBN 1782621636
A: Bajorath, J. - Chemoinformatics for Drug Discovery, Wiley, 2013, ISBN 1118139100
A: Engel T., Gasteiger T. - Chemoinformatics: Basic Concepts and Methods, Wiley-VCH, 2018, ISBN 3527331093
A: Bunin B. A., Siesel B. Morales G., Bajorath J. - Chemoinformatics: Theory, Practice, & Products, Springer, 2010, ISBN 9048172500
Poslední úprava: Svozil Daniel (18.12.2023)
Požadavky ke zkoušce (Forma způsobu ověření studijních výsledků) -
Study of the key concepts in pharmacodynamics, including affinity, potency, efficacy, and an overview of pharmacokinetics (Absorption, Distribution, Metabolism, Excretion) and toxicity.
Drug discovery & development, molecular target identification and validation, high-throughput screening, bioassays
Comprehensive understanding of the drug discovery and development process, including molecular target identification and validation.
Tour of the HTS facility at the Institute of Molecular Genetics, Czech Academy of Sciences
An educational tour to provide practical insights into high-throughput screening (HTS) processes and technologies.
Fragment-based drug design, Morgan algorithm, SMILES, InCHI
Exploration of fragment-based drug design, understanding the Morgan algorithm, and learning about linear chemical structure notations SMILES and InCHI.
Chemical data preparation and curation, fingerprints, similarity coefficients
Training in the preparation and curation of chemical data, understanding molecular fingerprints and similarity coefficients.
Similarity search, molecular descriptors
Skills in conducting similarity searches and understanding molecular descriptors.
Techniques in diversity selection, pharmacophore modelling, and scaffold hopping in drug design.
QSAR modeling - bias and variance, random forest, AdaBoost
Detailed study of Quantitative Structure-Activity Relationship (QSAR) modeling, focusing on bias, variance, and machine learning methods like Random Forest and AdaBoost.