SubjectsSubjects(version: 877)
Course, academic year 2020/2021
Quantum Computers and Algorithms - AP403023
Title: Quantum Computers and Algorithms
Guaranteed by: Department of Physical Chemistry (403)
Actual: from 2019
Semester: both
Points: 0
E-Credits: 0
Examination process:
Hours per week, examination: 2/1 other [hours/week]
Capacity: winter:unknown / unknown (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
Language: English
Teaching methods: full-time
For type: doctoral
Note: you can enroll for the course in winter and in summer semester
Guarantor: Pittner Jiří doc. Mgr. Dr.rer.nat., DSc.
Interchangeability : P403023
Annotation -
Last update: Matějka Pavel prof. Dr. RNDr. (04.09.2019)
This one-semester course is aimed for Ph.D. students interested in quantum computers, quantum algorithms and quantum information theory, with an accent towards their application to simulations of physical and physicochemical systems (cryptography topics will not be entirely dropped, but will not be in the central focus).
Aim of the course - Czech
Last update: Pátková Vlasta (16.11.2018)

Studenti budou znalí

  • principů kvantových počítačů pro řešení fyzikálních a chemických problémů
  • algoritmů používaných pro kvantové počítače

Literature -
Last update: Řehák Karel doc. Ing. CSc. (27.11.2018)

R: M. A. Nielsen, I. L. Chuang: Quantum Computation and Quantum Information, Cambridge University Press, ISBN 0-521-63503-9

R: J. Gruška: Quantum Computing, McGraw-Hill, ISBN 007-709503-0

Syllabus -
Last update: Pátková Vlasta (16.11.2018)

1) Reversible classical computations

2) Computational complexity

3) Quantum bit

4) Measurements in quantum mechanics

5) Entanglement, EPR and Bell inequalities

6) Quantum cryptography and teleportation

7) Quantum gates and circuits

8) Quantum Fourier transform

9) Shor's factoring algorithm

10) Quantum phase estimation algorithm and its iterative version

11) Quantum computations of many-electron systems - part A

12) Quantum computations of many-electron systems - part B

13) Quantum noise and error corrections codes

14) Alternatives of the gate model - adiabatic quantum computers