|
|
|
||
Last update: Pátková Vlasta (16.11.2018)
|
|
||
Last update: Pátková Vlasta (16.11.2018)
Students will learn to choose a suitable numerical method for solution a mathematical model consisting of algebraic or differential equations. |
|
||
Last update: Jahoda Milan doc. Dr. Ing. (28.11.2018)
F. Apperson, An Introduction to Numerical Methods and Analysis, John Wiley & Sons, 2001, ISBN 0-471-31647-4 J. Stoer, R. Bulirsh: Introduction to Numerical Analysis, 3rd ed., Springer New York, 2002,ISBN 978-1441930064 Further literature individually. |
|
||
Last update: Pátková Vlasta (16.11.2018)
http://www.vscht.cz/mat/NM/NMAplikace/NMAplikace.html |
|
||
Last update: Pátková Vlasta (16.11.2018)
Studying literature and a individual project. |
|
||
Last update: Pátková Vlasta (16.11.2018)
1. Interpolation, interpolation by spline functions. 2. Difference formulas, quadrature formulas. 3. Methods of linear algebra. 4. Systems of nonlinear equations. Newton method. 5. Initial value problem for ODE´s. One-step methods. 6. Multistep methods. Stability. Error estimation. 7. Stiff systems. A-stable methods. 8. Boundary value problem for ODE´s. Finite-difference methods. 9. Shooting methods. 10. Finite-difference methods for linear PDE´s of parabolic type. 11. Finite-difference methods for nonlinear PDE´s of parabolic type. 12. Methods of lines. 13. Finite-difference methods for PDE´s of elliptic type. 14. Linear and nonlinear regression. 15. Individual projekt. |
|
||
Last update: Pátková Vlasta (16.11.2018)
none |
|
||
Last update: Pátková Vlasta (16.11.2018)
Individual project, written exam, oral exam |