|
|
|
||
The Elementary Course of Statistics is aimed at undergraduate students. Students will learn basic statistical methods and gain insight into basic probability concepts.
Data processing will be done using R software which is a programming language designed especially for statistical calculations and graphical outputs. It is a free software with quality help, and thanks to its great popularity in the statistical community, many blogs with tutorials, hints and sample examples can be found.
Last update: Zikmundová Markéta (03.06.2019)
|
|
||
Students will: 1. master fundamental statistical and probability concepts 2. have working knowledge of elementary statistical methods 3. be able to solve elementary statistical problems arising in applications Last update: Kubová Petra (04.12.2017)
|
|
||
R: S.M. Ross: Introduction to Probability and Statistics for Engineers and Scientists (2014, Elsevier) R: J.I. Barragués: Probability and Statistics – A didactic Introduction (2014, Taylor & Francis) R: B. Bowerman, R.T. O'Counel: Applied Statistics (1997, IRWIN Inc Company) Last update: Šnupárková Jana (09.05.2019)
|
|
||
https://e-learning.vscht.cz/course/view.php?id=178 Last update: Šnupárková Jana (11.10.2019)
|
|
||
Pravidla pro udělení zápočtu určují cvičící. Zpravidla je nutná aktivní účast na cvičeních a vypracování samostatných úkolů, popř. úspěšně absolvovat dodatečný souhrnný test. Účast na cvičeních je povinná.
Udělený zápočet je nutnou podmínkou pro skládání zkoušky. Zkouška je ústní. Last update: Šnupárková Jana (17.09.2020)
|
|
||
1. Random events, probability and its properties, independence of random events, conditional probability 2. Random variables, their probability distribution and characteristics 3. Fundamental types of probability distributions (especially normal distribution) 4. Random vectors and their distributions, correlation and independence of random variables 5. Sum of large number of random variables — Central Limit Theorem, Law of Large Numbers 6. Random sample, point estimate of expectation and variance, Maximum Likelihood and Bayesian estimators 7. Confidence intervals — calculation and interpretation 8. Testing of statistical hypotheses — basic principle, type I and II errors, interpretation of results (p-value), basic parametric and nonparametric tests 9. ANOVA 10. Test of independence of quantitative random variables (correlation test) 11. Goodness-of-fit testing, test of independence in contingency tables 12. Fundaments of regression analysis — linear, multiple, nonlinear Last update: Šnupárková Jana (11.10.2019)
|
|
||
Students are expected to have either completed the prerequisite course Mathematics B or possess the equivalent knowledge prior to enrolling in the course. Last update: Borská Lucie (13.05.2019)
|
|
||
Mathematics A Last update: Borská Lucie (03.05.2019)
|
|
||
Credit for controlled individual work. Oral exam. Last update: Šnupárková Jana (17.09.2020)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 0.5 | 14 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 1 | 28 | ||
4 / 4 | 112 / 112 |