SubjectsSubjects(version: 876)
Course, academic year 2020/2021
Computer Algebra System Maple - B413005
Title: Počítačový algebraický systém Maple
Guaranteed by: Department of Mathematics (413)
Actual: from 2019
Semester: summer
Points: summer s.:2
E-Credits: summer s.:2
Examination process: summer s.:
Hours per week, examination: summer s.:0/2 MC [hours/week]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
For type: Bachelor's
Additional information:
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Němcová Jana Mgr. Ph.D.
Interchangeability : AB413005
This subject contains the following additional online materials
Annotation -
Last update: Fialová Jana (15.01.2018)
The course introduces the work environment of Maple, one of the technical computing softwares for engineers. Basic commands and programming structures will be used to solve the problems motivated by applications in chemistry, biology and physics.
Aim of the course -
Last update: Fialová Jana (15.01.2018)

Students will acquire knowledge of Maple work environment (active knowledge of Maple commands for all basic mathematical operations, ability to create own procedures and work with data). Students should be able to use Maple to solve problems arising from applications in engineering.

Literature -
Last update: Fialová Jana (15.01.2018)

A: R.B.Israel: Calculus the Maple way. Addison-Wesley Pub. Ltd., 1996

Learning resources -
Last update: Fialová Jana (15.01.2018)

Teaching methods -
Last update: Fialová Jana (15.01.2018)

Exercise classes.

Syllabus -
Last update: Fialová Jana (15.01.2018)

1. Introduction. Algebraic operations

2. Standard functions, user's defined functions

3. Plots in 2D, plots in 3D

4. Animations

5. Limits, differentiation

6. Integration

7. Solving algebraic equations and inequations

8. Linear algebra, Gaussian elimination, determinants, eigenvalues and eigenvectors

9. Ordinary differential equations

10. Programming

11. Application examples

12. Reading data

13. Writing data

14. Final test

Entry requirements -
Last update: Borská Lucie RNDr. Ph.D. (13.05.2019)

Students are expected to have either completed the prerequisite course Mathematics A or possess the equivalent knowledge prior to enrolling in the course.

Registration requirements -
Last update: Borská Lucie RNDr. Ph.D. (06.05.2019)

No requirements.

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0,1 3
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0,3 7
Práce na individuálním projektu 0,8 23
Účast na seminářích 0,8 23
2 / 2 56 / 56