SubjectsSubjects(version: 954)
Course, academic year 2023/2024
Computer Algebra System Maple - B413005
Title: Počítačový algebraický systém Maple
Guaranteed by: Department of Mathematics, Informatics and Cybernetics (446)
Faculty: Faculty of Chemical Engineering
Actual: from 2021
Semester: summer
Points: summer s.:2
E-Credits: summer s.:2
Examination process: summer s.:
Hours per week, examination: summer s.:0/2, MC [HT]
Capacity: unknown / 84 (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Červená Lenka RNDr. Ph.D.
Interchangeability : AB413005, N413010, N413010A
Is interchangeable with: AB413005
This subject contains the following additional online materials
Annotation -
The course introduces the work environment of Maple, one of the technical computing softwares for engineers. Basic commands and programming structures will be used to solve the problems motivated by applications in chemistry, biology and physics.
Last update: Fialová Jana (15.01.2018)
Aim of the course -

Students will acquire knowledge of Maple work environment (active knowledge of Maple commands for all basic mathematical operations, ability to create own procedures and work with data). Students should be able to use Maple to solve problems arising from applications in engineering.

Last update: Fialová Jana (15.01.2018)
Literature -

A: R.B.Israel: Calculus the Maple way. Addison-Wesley Pub. Ltd., 1996

Last update: Fialová Jana (15.01.2018)
Learning resources -

Last update: Fialová Jana (15.01.2018)
Teaching methods -

Exercise classes.

Last update: Fialová Jana (15.01.2018)
Syllabus -

1. Introduction. Algebraic operations

2. Standard functions, user's defined functions

3. Plots in 2D, plots in 3D

4. Animations

5. Limits, differentiation

6. Integration

7. Solving algebraic equations and inequations

8. Linear algebra, Gaussian elimination, determinants, eigenvalues and eigenvectors

9. Ordinary differential equations

10. Programming

11. Application examples

12. Reading data

13. Writing data

14. Final test

Last update: Fialová Jana (15.01.2018)
Entry requirements -

Students are expected to have either completed the prerequisite course Mathematics A or possess the equivalent knowledge prior to enrolling in the course.

Last update: Borská Lucie (13.05.2019)
Registration requirements -

No requirements.

Last update: Borská Lucie (06.05.2019)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.1 3
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.3 7
Práce na individuálním projektu 0.8 23
Účast na seminářích 0.8 23
2 / 2 56 / 56