SubjectsSubjects(version: 895)
Course, academic year 2021/2022
MathematicsB: Seminar - B413014
Title: Výběrový seminář k Matematice B
Guaranteed by: Department of Mathematics (413)
Actual: from 2020
Semester: summer
Points: summer s.:2
E-Credits: summer s.:2
Examination process: summer s.:
Hours per week, examination: summer s.:0/2 C [hours/week]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
For type:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Borská Lucie RNDr. Ph.D.
Annotation -
Last update: Kubová Petra Ing. (15.01.2021)
The seminar deepens students knowledge gained in lectures and exercises in Mathematics A. The main content of the course is working with gifted students, the emphasis is on solving more complex and application examples from different parts of Mathematics A. The application examples motivate students to expand their theoretical knowledge.
Aim of the course -
Last update: Kubová Petra Ing. (15.01.2021)

The outcomes are motivated by the effort to supplement and expand the teaching of the newly accredited course Mathematics A so that future talented students will acquire the same knowledge as students of the current subject Mathematics A taught for students of the field of study Chemistry.

Literature -
Last update: Kubová Petra Ing. (15.01.2021)

A: Turzík, Dubcová, Pavlíková: Základy matematiky pro bakaláře, skripta, VŠCHT Praha, 2011, ISBN: 978-80-7080-787-3

R: Klíč a kol.: Matematika I ve strukturovaném studiu, skripta, VŠCHT Praha, 2007, ISBN: 978-80-7080-656-2

R: Míčka a kol.: Sbírka příkladů z matematiky, skripta, VŠCHT Praha, 2002, ISBN 80-7080-484-X

A: Porubský: Fundamental Mathematics for Engineers, Vol.I, VŠCHT, 2001, ISBN: 80-7080-418-1

Learning resources -
Last update: Kubová Petra Ing. (15.01.2021)

E-sbírka příkladů pro předmět Matematika I -

Matematika s progrmem Mathematica a Maple -

Aplikační příklady -

E-sbírka Výběrový seminář k Matematice A -

Teaching methods -
Last update: Kubová Petra Ing. (15.01.2021)

Seminars. Students are encouraged to study independently and present the results obtained.

Requirements to the exam -
Last update: Kubová Petra Ing. (15.01.2021)

The basis for assessment will include a final project

Syllabus -
Last update: Kubová Petra Ing. (15.01.2021)

1. Limits and continuity of functions of one variable. Theorems on infinite limits.

2. L'Hospital's rule. Application examples.

3. Limits of sequences.

4.-5. Properties of functions continuous on a closed interval - Summary of theorems, proofs.

6. Examination of the graph of the function of one variable.

7. Four useful substitutions in indeterminate integrals.

8. Substitutions in differential equations.

9. Bernoulli equation.

10. Boundary value problems for linear second order differential equations.

11. Solvability of boundary value problems.

12. Numerical integration.

13. Application examples.

14. Check project.

Registration requirements -
Last update: Kubová Petra Ing. (15.01.2021)

No requirements.