|
|
|
||
The main goal of the course is to familiarize the students with the common generally valid principles of system identification both analogue and discrete
Last update: Pátková Vlasta (19.04.2018)
|
|
||
Students will be able to: • work with common identification methods • work with their implementation • evaluate their efficiency • students will take part in one large complex work (beginning with data measuring up to model formulation) • students will use MATLAB interface for model identification Last update: Pátková Vlasta (19.04.2018)
|
|
||
R:Šimandl M.,Identifikace systémů a filtrace, Vydavatelství ZČU, Plzeň,1997,8070821701 R:Noskievič P.,Modelování a identifikace systémů,Montanex a.s.,Ostrava,1999,80722250302 A:Ljung L.,Systém Identification. Theory for the User,Prentice Hall PTR,N.J.,1999,0136566952 Last update: Pátková Vlasta (19.04.2018)
|
|
||
internal materials Last update: Pátková Vlasta (19.04.2018)
|
|
||
Student will obtain the credits after the successful finishing Last update: Pátková Vlasta (19.04.2018)
|
|
||
1. Experimental identification - basic scheme, wide and narrow definition of the branch 2. Structure model selection and process dynamics 3. Signals and their characteristics, signal discretization. Input testing signals, their selection 4. Adequacy criteria for models and processes, least square method, its modification 5. Identification methods classification, deterministic models in time and frequency domain 6. Dynamic system identification via transfer characteristics - project I 7. Methods of Strejc, Broid, progressive integration - project II 8. Frequency domain identification - method of Kardašov-Karnjušin 9. Frequency domain identification - correlation and spectral analysis, statistic dynamics methods 10. Stochastic models of discrete type, noise models, drift description 11. Parameter estimation methods for discrete models, least square - simple and weighted 12. Generalized, extended, repeated LSM, maximum credibility method 13. Numeric solution of LSM, recursive methods, robust identification, bootstrap, jackknife - project III 14. Large project Last update: Pátková Vlasta (19.04.2018)
|
|
||
Matematics II Last update: Pátková Vlasta (19.04.2018)
|
|
||
studenti budou hodnoceni zápočtem za samostatné práce/projekty v seminářích a známkou za ústní zkoušku Last update: Bártová Darina (26.04.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 0.5 | 14 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |