SubjectsSubjects(version: 874)
Course, academic year 2019/2020
Biomass for Energy Production - N216025
Title: Výroba energie z biomasy
Guaranteed by: Department of Gaseous and Solid Fuels and Air protection (216)
Actual: from 2019
Semester: summer
Points: summer s.:3
E-Credits: summer s.:3
Examination process: summer s.:
Hours per week, examination: summer s.:2/0 Ex [hours/week]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Is provided by: M216016
For type:  
Guarantor: Skoblia Siarhei Ing. Ph.D.
Z//Is interchangeable with: M216016
Annotation -
Last update: TAJ216 (19.11.2013)
The main aim of the course is a summarization of current knowledge in the field of biomass energy utilization, alternative liquid, gaseous and solid fuels production through thermochemical conversion. The main aim is to improve the student’s orientation, acquisition of necessary knowledge for successful application in practice. The course introduces the current status of biomass utilization for energy production, describes innovative and modern technologies to enhance the overall efficiency of these processes and identifies pitfalls associated with their practical implementation. Assessment of technological processes for the production of electricity is done in terms of process efficiency and overall environmental impact. Used technologies are discussed in detail: the benefits of various technological processes summarized the requirements for biomass properties and bottlenecks for end users. In the course, students are also familiar with the demonstration and commercial technologies worldwide that shows future trends of thermochemical processing of biomass, production of alternative fuels and energy based on modern techniques designed to increase the overall efficiency. The course also includes excursions to facilities generating electricity from biomass.
Aim of the course -
Last update: TAJ216 (19.11.2013)

Students will be able to:

Understand the problems of energy production from biomass,

Determine and evaluate basic physicochemical properties of different types of biomass, its behavior under conditions of thermochemical conversion,

Understand the different types of thermochemical conversion processes (combustion, fast and slow pyrolysis, gasification) and equipment suitable for the production of energy (turbine engines, fuel cells),

Evaluate the possibility of using different types of biomass for energy production, choose the most suitable thermochemical process and apparatus for the production of electricity and to assess the overall system efficiency,

Understand the legislative and economic aspects of biomass utilization.

Literature -
Last update: Skoblia Siarhei Ing. Ph.D. (30.07.2013)

R: Pohořelý M., Jeremiáš M., Kameníková P., Skoblia S., Svoboda K., -274 (2012)Punčochář M.: Zplyňování biomasy. Chem. Listy 106, 264

R: Babu P.: Biomass Gasification and Pyrolysis. Practical Design and Theory, Elsevier, Burlington, MA 01803, USA (2010), ISBN 978-0-12-374988-8.

R: Reed, T. B.: Encyclopedia of Biomass Thermal Conversion. The Principles and Technology of Pyrolysis, Gasification & Combustion. The Biomass Energy Foundation, USA (2002); ISBN 1-60322-055-0.

A: Skoblia S., Tenkrát D., Vosecký M., Pohořelý M., Lisý M., Balaš M., Prokeš O.: Využití biomasy jako obnovitelného zdroje energie. Chem. Listy100(S), s20-s24, (2006).

A: Brown, R. C.: Thermochemical Processing of Biomass. Conversion into Fuels, Chemicals and Power. Wiley, United Kingdom (2011); ISBN 978-0-470-72111-7.

A: Knoef, H.: Handbook Biomass Gasification. BTG, Netherlands (2005); ISBN 90-810068-1-9.

A: Pastorek Z., Kára J., Jevič P.: Biomasa obnovitelný zdroj energie, FCC Public 2004, ISBN 80-86534-06-5

Learning resources -
Last update: Skoblia Siarhei Ing. Ph.D. (31.07.2013)

Teaching methods -
Last update: Skoblia Siarhei Ing. Ph.D. (31.07.2013)

2 hours of lectures

Syllabus -
Last update: Skoblia Siarhei Ing. Ph.D. (31.07.2013)

1. Introduction to the production of energy from biomass, current status and perspectives.

2. Physicochemical properties of biomass.

3. Thermochemical conversion of biomass.

4. Pyrolysis. Effect of the process parameters (heating rate, temperature). Fast pyrolysis.

5. Slow pyrolysis. Torrefaction. Wood charcoal production.

6. Combustion.

7. Gasification.

8. The quality requirements of thermochemical conversion in terms of its further use.

9. The tar from biomass gasification, definition, composition and methods of determination.

10. Cleaning of basic products of thermochemical conversion of biomass.

11. Production of alternative liquid and gaseous fuels from biomass.

12. Hydrothermal gasification of biomass.

13. Equipment for the production of electricity from biomass in the world and Czech Republic.

14. Excursion in laboratories used for the determination of physicochemical properties of the biomass. Queries. Consultation.

Course completion requirements -
Last update: Skoblia Siarhei Ing. Ph.D. (30.01.2018)

Student must answer at least 50% of the questions correctly at the oral exam.

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0,5 14
Účast v laboratořích (na exkurzi nebo praxi) 0,3 8
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0,5 14
Příprava na zkoušku a její absolvování 0,7 20
3 / 3 84 / 84
Coursework assessment
Form Significance
Regular attendance 30
Examination test 20
Oral examination 50