SubjectsSubjects(version: 845)
Course, academic year 2018/2019
  
Molecular modelling - N320095
Title in English: Molekulové modelování
Guaranteed by: Department of Biochemistry and Microbiology (320)
Actual: from 2015
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Level:  
For type:  
Guarantor: Spiwok Vojtěch doc. Ing. Ph.D.
Raich Ivan doc. Dr. Ing.
Lankaš Filip doc.Ing. Ph.D.
Annotation -
Last update: Spiwok Vojtěch doc. Ing. Ph.D. (19.06.2013)
The subject covers theoretical backgrounds and practical examples of application of computational methods on molecular systems, namely molecular mechanics and quantum mechanics. It includes small molecules, as well as biomolecules and supra-molecular systems.
Aim of the course -
Last update: Spiwok Vojtěch doc. Ing. Ph.D. (12.07.2013)

Students will be able to:

design, apply and analyse results of molecular modelling calculations (molecular mechanics, basic quantum chemistry methods, docking).

Literature -
Last update: Spiwok Vojtěch doc. Ing. Ph.D. (12.07.2013)

R: D.C. Young: Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. John Wiley & Sons, Inc., 2002, ISBN: 9780471333685 (print), 9780471220657 (online)

Learning resources -
Last update: Spiwok Vojtěch doc. Ing. Ph.D. (04.07.2013)

http://web.vscht.cz/spiwokv/molmod/

Syllabus -
Last update: Spiwok Vojtěch doc. Ing. Ph.D. (12.03.2015)

1. 3D geometry, Cartesian coordinates, Z-matix, connectivity, PDB file

2. Inspection of 3D models, bond lengths, angles, torsions, rendering

3. Structure-potential energy relationship, different levels of theory, potential energy hypersurface

4. Molecular mechanics, ball-spring model, single point calculations

5. Schrödinger equation, wave function, approximative solutions, methods (including semi-empirical), variational methods, basis sets

6. Prediction of properties (charges, reaction kinetics and mechanisms, spectral and chiroptical properties)

7. Geometry optimization, local minima problem

8. Molecular vibrations, normal modes

9. Solvation, implicit and explicit solvent, continuum electrostatics

10. Molecular dynamics, PBC, NPT, NVT, thermostats, constraints

11. Sampling, data collection, analysis and visualisation

12. Mesoscopic simulations (coarse graining, Brownian simulations)

13. Free energy, metadynamics and related methods

14. Example studies

Registration requirements -
Last update: TAJ320 (25.09.2013)

Physical Chemistry

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0,5 14
Účast na přednáškách 0,5 14
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0,5 14
Práce na individuálním projektu 0,5 14
Příprava na zkoušku a její absolvování 1 28
3 / 3 84 / 84
Coursework assessment
Form Significance
Aktivní účast na výuce 30
Obhajoba individuálního projektu 10
Zkouškový test 30
Ústní zkouška 30

 
VŠCHT Praha