SubjectsSubjects(version: 855)
Course, academic year 2019/2020
  
Genetic Engineering - S320007
Title: Genetic Engineering
Guaranteed by: Department of Biochemistry and Microbiology (320)
Actual: from 2019
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: English
Teaching methods: full-time
Level:  
Is provided by: AM320017
For type:  
Guarantor: Ruml Tomáš prof. Ing. CSc.
Interchangeability : N320051
Is interchangeable with: N320051
Annotation -
Last update: Švecová Blanka Ing. Ph.D. (29.08.2018)
The subject is focused on understanding of principles of manipulation with nucleic acids and their analysis. It covers information about various methods of introducing genes into diverse cell types, determination of gene expression and analysis. The goal is to deliver information about genetic engineering techniques in order to facilitate the choce of the optimal method for a particular application. The lectures cover basic methods of isolation, analysis and modification of nucleic acids and special applications as gene modification for detection or affinity purification of gene product, study of interaction of proteins and nucleic acids, or gene therapies.
Aim of the course -
Last update: Švecová Blanka Ing. Ph.D. (29.08.2018)

Students will be able to:

Isolate DNA and perform basic manipulations with recombinant DNA. Prepare vectors for genetic modification of various cell types.

Modify and label DNA, apply DNA labeled probes for identification of specific sequences.

Modify genes by directed mutagenesis by directed mutagenesis, extension by sequences for detection and purification by affinity chromatography.

Analyze production of heterologous proteins and isolate them from various cell types.

Analyze protein interactions. Construct gene libraries.

Literature -
Last update: Ruml Tomáš prof. Ing. CSc. (31.08.2018)

R: Green M. R., Sambrook J., Molecular Cloning: A Laboratory Manual (Fourth Edition); Cold Spring Harbor Laboratory Press 2012

Syllabus - Czech
Last update: Ruml Tomáš prof. Ing. CSc. (26.09.2018)

1. Introduction genetics 1

2. Introduction genetics 2

3. Introduction genetic engineering

4. Restriction endonucleases

5. Sequence analysis

6. Gene expression 1

7. Gene expression 2 biotechnology

8. PCR

9. DNA sequencing

10. Forensic analysis

11. Protein interactions

12. Gene therapy 1

13. Gene therapy 2

14. Interactions assessment

 
VŠCHT Praha