|
|
|
||
Introduction to modern particle-based methods of theoretical (computational) chemistry. The course covers basics od quantum chemistry, spectroscopy, statistical thermodynamics, kinetic theory, theory of chemical reactions, and molecular modeling and simulations.
Last update: Pátková Vlasta (15.01.2018)
|
|
||
Students will be able to: Understand the basic concepts of quantum mechanics Solve simple quantum-mechanical problems with chemical applications (particle in a box, the angular momentum) Taking advantage of quantum chemical methods to the study of atoms and molecules Understand the basic principles of statistical thermodynamics Solve simple statistical-thermodynamical tasks in chemical applications (gas-phase reaction) Last update: Pátková Vlasta (15.01.2018)
|
|
||
Acquiring credit (meeting the minimum requirements of the computational part) Oral exam Last update: Řehák Karel (02.03.2018)
|
|
||
R: Atkins P.W., de Paula J., Physical Chemistry, Oxford University Press, 2010, 9780199543373 R: Simons J., An Introduction to Theoretical Chemistry, Cambridge University Press, 2003, 0521823609
Last update: Pátková Vlasta (15.01.2018)
|
|
||
Lectures, exercises, examples from different parts of chemistry Last update: Pátková Vlasta (15.01.2018)
|
|
||
1. From electrons and nuclei to molecules to bulk phase: classical mechanics, quantum mechanics, and statistical mechanics. 2. Schrödinger equation and the solution for a particle in a box: electron structure of polyenes and solids, tunneling. 3. The origin of the chemical bond: electronic structure of atoms, Schrödinger equation for molecules and its solution. 4. Structure of many-atom molecules and computational quantum chemistry: hybridization, Hückel method, ligand field, weak intermolecular interactions, potential energy surface, molecular symmetry. 5. Watching molecules I: absorption and emission of radiation, rotational, IR, and Raman spectra, NMR, diffraction. 6. Watching molecules II: electron spectroscopy, photochemistry, lasers. 7. Electric, magnetic, and optical properties of molecules, intermolecular forces and molecular models. 8. Principles of statistical thermodynamics I: ensembles, probability, Boltzmann distribution, mean values. 9. Principles of statistical thermodynamics II: entropy and the partition function. 10. Ideal gas: first-principle calculation of thermodynamic functions. 11. Liquids and dense gases: virial expansion, structure and correlation functions. 12. Kinetic theory of gases. 13. Theory of chemical reactions: traveling on the potential energy surface, collision theory, transition state theory. Reaction mechanisms. 14. Molecular simulations: Monte Carlo and molecular dynamics methods. Last update: Pátková Vlasta (15.01.2018)
|
|
||
http://www.vscht.cz/fch/cz/pomucky/kolafa/N403007.html Last update: Pátková Vlasta (15.01.2018)
|
|
||
Mathematics I, Physical chemistry I Last update: Pátková Vlasta (15.01.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 0.5 | 14 | ||
5 / 5 | 140 / 140 |