SubjectsSubjects(version: 978)
Course, academic year 2025/2026
  
Metabolomic Data Analysis - M143018
Title: Analýza metabolomických dat
Guaranteed by: Department of Informatics and Chemistry (143)
Faculty: Faculty of Chemical Technology
Actual: from 2025
Semester: summer
Points: summer s.:3
E-Credits: summer s.:3
Examination process: summer s.:
Hours per week, examination: summer s.:2/0, Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Qualifications:  
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Kuda Ondřej RNDr. Ph.D.
Svozil Daniel prof. Mgr. Ph.D.
Classification: Biology > Genetics
Informatics > Informatics, Software Applications, Computer Graphics and Geometry, Database Systems, Didactics of Informatics, Discrete Mathematics, External Subjects, General Subjects, Computer and Formal Linguistics, Optimalization, Programming, Software Engineering, Theoretical Computer Science
Mathematics > Probability and Statistics
Examination dates   Schedule   
Annotation -
This lecture will introduce students to the basics of metabolomics data processing. Metabolomics studies metabolites, which are the intermediates or end products of cellular metabolism (amino acids, carbohydrates, nucleotides, lipids, etc.). Lipidomics is a subset of metabolomics that specifically focuses on the complex analysis of lipids. Students will gain a comprehensive overview of the field, from data acquisition and processing to complex analyses such as metabolic pathway analysis, identifier mapping, metabolic flux analysis, and integration with other omics data.
Last update: Cibulková Jana (22.01.2025)
Course completion requirements -

Uvádí se konkrétní podoba ověřování výsledků učení uvedeného v předchozím bodě (např. ústní zkouška, písemný test a jeho typ, hodnocení portfolií, prezentací, závěrečných projektů, esejí, hodnocení praktických dovedností

Last update: Cibulková Jana (22.01.2025)
Literature -

Obligatory:

  • Brereton, Richard G. . Data Analysis and Chemometrics for Metabolomics. : © 2024 John Wiley & Sons, Ltd, 2024, https://doi.org/10.1002/9781119639398 s. ISBN Online ISBN:97811196.

Recommended:

  • Wehrens, Ron; Salek, Reza. Metabolomics, Practical Guide to Design and Analysis. New York: CRC Press, 2019, https://doi.org/10.1201/9781315370583 s. ISBN eBook ISBN9781315370.
  • Winkler, Robert. Processing Metabolomics and Proteomics Data with Open Software: A Practical Guide. : Royal Society of Chemistry , 2020, https://doi.org/10.1039/9781788019880 s. ISBN 978-1-78801-990-3.
  • Giera, Martin; Sánchez-López, Elena. Clinical Metabolomics, Method and Protocols. : Springer Protocols , 2024, https://doi.org/10.1007/978-1-0716-4116-3 s. ISBN -.

Last update: Svozil Daniel (22.01.2025)
Teaching methods -

Vzor textů pro toto okénko dodá učitelství.

Last update: Cibulková Jana (22.01.2025)
Requirements to the exam -

Last update: Cibulková Jana (22.01.2025)
Syllabus -

1 Introduction to Metabolomics and Lipidomics
  • Fundamentals of metabolomics and lipidomics, definitions
  • Overview of mass spectrometry-based approaches (data type)
  • Overview of NMR-based and other approaches (data type)
  • Metabolite extraction techniques (chemical discrimination, logP, stability, artifacts, contaminants)
2 Mass Spectrometry Techniques in Metabolomics
  • Principles of mass spectrometry, briefly
  • LC-MS, GC-MS, and direct infusion MS methods, ionization techniques (ESI, APCI, EI, etc.)
  • High-resolution vs low-resolution mass spectrometry (MS/MS, MS3 spectra for metabolite identification, signature fragments)
  • Quality control and standardization in metabolomics experiments (sequences, NIST, internal standards, reference material)
3 Data Processing and Peak Detection
  • Experimental design and data acquisition strategies (DDA, IDA, SWATH, etc.)
  • Raw data formats (mzML, mzXML, vendor-specific formats, and conversions)
  • Raw data processing and feature detection (software tools overview, commercial reports)
4 Metabolite Annotation and Identification
  • Database searching and spectral matching (software overview, examples, MS libraries)
  • Targeted vs untargeted analysis (RT mz lists, profiling, shotgun approach)
  • In-silico fragmentation for structural elucidation (MS/MS spectra)
  • Confidence levels in metabolite identification, classification systems (SMILES, InChI, Goslin)
5 Identifier Mapping and Data Integration
  • Metabolite identifier systems and conversions (HMDB, KEGG, ChemSpider, LipidMAPS, SwissLipids, etc.)
  • Integration of metabolomics data with other omics data (ambiguity, cross-linking, BRIDGE DB)
  • Databases and tools for identifier mapping (KEGG, SMPDB, Goslin, LipidLynX, WikiPathways)
6 Statistical Analysis in Metabolomics
  • Univariate and multivariate statistical methods (overview, R & Python packages, MetaboAnalyst)
  • Machine learning approaches in metabolomics (structures and metabolic fate)
  • Visualization techniques for high-dimensional data (from heatmaps to chord plots, R & Python packages)
  • User reports (expectations vs reality)
7 Pathway Analysis and Biological Interpretation
  • Metabolic pathway databases and tools (SMPDB, RHEA, REACTOME, custom-made pathways)
  • Pathway enrichment analysis (software overview, examples)
  • Network-based approaches for pathway analysis (MetCyc, software overview, examples)
  • Project-specific interpretation of metabolipidome
8 Over-Representation Analysis
  • Principles of over-representation & pathway analysis (KEGG, WikiPathway, SMPDB, LORA, LipidMiniOn, LION)
  • Gene set enrichment analysis (GSEA) in metabolomics, linking identifiers
  • Interpretation and visualization of enrichment results (statistics, Python packages)
9 Metabolic Flux Analysis
  • Principles of metabolic flux analysis (tracers, atom mapping)
  • 13C metabolic flux analysis techniques, 2H metabolic flux analysis, other tracers
  • Acquisition of metabolomics data in flux analysis, mass distribution vectors (MDV)
  • Deisotoping, isotopologues, isotopomers, cumomers, elementary metabolite units (EMU)
10 Modelling of Metabolic Fluxes
  • Metabolic engineering, metabolic pathways, enzyme kinetics, regulations
  • Computational Modeling in Systems Biology (toy network, organism-wide network)
  • Optimizations of metabolic networks (INCA, MetFlux, tracer metabolomics)
11 Visualization of Metabolic Fluxes in vivo
  • Multi-dimensional visualization of data over networks (Python and R packages)
  • Analysis of inter-organ metabolism using tracers (case studies)
  • Spatial and temporal resolution in metabolomics and fluxomics (subcellular organelles, microbiome)
12 Lipidomics: Specialized Techniques and Analysis
  • Lipid extraction and separation methods, specifics
  • Structural characterization of complex lipids (MS fragmentation techniques, structural hierarchy, LipidMAPs)
  • Computational approach, virtual lipidomes, epilipidome diversity
  • Quantitative lipidomics and data analysis (SPLASH mixes, reference material)

13 Multi-omics Integration in Metabolomics

  • Strategies for integrating metabolomics with genomics, transcriptomics, and proteomics (Multi‐Omics Factor Analysis)
  • Network-based approaches for multi-omics data integration (RHEA, Reactome, BRIDGE DB, KEGG, organism-specific maps)
  • Case studies in systems biology and precision medicine (cancer, heart failure)
14 Practical metabolomics data processing
  • LC-MS data processing, peak annotation, metabolomics & lipidomics
  • ID mapping, conversions
  • Statistics and data visualization
  • Reporting

Last update: Cibulková Jana (22.01.2025)
Learning resources -

1. Publication: Guiding the choice of informatics software and tools for lipidomics research applications, Ni et al. 2023, DOI: https://doi.org/10.1038/s41592-022-01710-0

2. Publication: Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics, Cajka & Fiehn, 2015, DOI: https://doi.org/10.1021/acs.analchem.5b04491

3. Publication: Tracing metabolic flux through time and space with isotope labeling experiments, Allen & Young, 2020, DOI: https://doi.org/10.1016/j.copbio.2019.11.003

4. Gitbook: https://laboratory-of-lipid-metabolism-a.gitbook.io/omics-data-visualization-in-r-and-python

Last update: Svozil Daniel (22.01.2025)
Learning outcomes -

Students will be able to:

1. Identify and distinguish the origin of metabolomic data including critical evaluation of the information value.

2. Handle basic metabolomics data processing including annotation, identification and reporting.

3. Perform conversion to identifiers in databases with links to pathway analysis and statistical processing.

4. Understand the principles and procedures of metabolic flux analysis using stable isotopes.

5. Understand the principles of linking metabolomics data to other omics.

Last update: Cibulková Jana (22.01.2025)
Registration requirements -

Last update: Cibulková Jana (22.01.2025)
 
VŠCHT Praha