Předmět je věnován studiu buněčných procesů na molekulární úrovni a je koncipován tak, aby absolventi obdrželi základní znalosti pro pochopení komplexního fungování eukaryotických buněk v mnohobuněčných organismech.
Poslední úprava: Kubová Petra Ing. (25.04.2018)
The subject is devoted to the study of cellular processes at the molecular level and is conceived so that the students receive the basic knowledge for understanding the complex functioning of eukaryotic cells in multicellular organisms.
Výstupy studia předmětu -
Poslední úprava: Kubová Petra Ing. (25.04.2018)
Absolvent tohoto kurzu bude rozumět základním principům fungování eukaryotických buněk v mnohobuněčných organismech. Studenti porozumí zejména strukturní a funkční organizaci eukaryotické buňky, intracelulárnímu a vezikulárnímu transportu proteinů do organel a jejich zabudovávání do biologických membrán, podstatě komunikace buňky s okolím a přenosům signálů z vnějšího prostředí, regulaci buněčného cyklu, diferenciace buněk, programované buněčné smrti, molekulární podstatě rakoviny a zabudování a integraci buněk do tkání.
Poslední úprava: Kubová Petra Ing. (25.04.2018)
Students of this course will understand the basic principles of eukaryotic cell functioning in multicellular organisms. Students will comprehend the structural and functional organization of eukaryotic cells, intracellular and vesicular transport of proteins to the organelles and their incorporation into biological membranes, basis of cell communication with the environment and signal transduction, cell cycle regulation, cell differentiation, programmed cell death, and integration of cells into tissues.
R: Alberts B.:Molecular Biology of the Cell, 5 nebo 6 vydání ISBN (6 vyd.): 978-0-8153-4464-3
Studijní opory -
Poslední úprava: Kubová Petra Ing. (25.04.2018)
http://eso.vscht.cz/
Poslední úprava: Kubová Petra Ing. (25.04.2018)
http://eso.vscht.cz/
Sylabus -
Poslední úprava: Kubová Petra Ing. (25.04.2018)
1. Organizace eukaryotických buněk a jejich integrace do různých typů tkání, úvod do cytologie a histologie: organizace eukaryotické buňky: organizace buněčného povrchu, interakce buňka-buňka a buňka-extracelulární matrix, cytoskeleton, buněčné organely; typy tkání a jejich základní charakteristika: epithelová tkáň, pojivová tkáň, nervová tkáň a svalová tkáň
2. Regulace funkce proteinů: sbalování (folding): molekulární chaperony a chaperoniny; abnormálně zfoldované proteiny, amyloidní fibrily; degradace proteinů: ubikvitin-proteasomový systém; syntéza x degradace, degradace mRNA; modifikace a úpravy proteinů: nekovalentní modifikace: molekulové přepínače, kovalentní modifikace: ubikvitinylace, fosforylace, acetylace, glykosylace, tvorba S-S můstků, neddylace, sumoylace, methylace
3. Membránové proteiny a jejich funkce, mechanismy transmembránového transportu iontů a malých molekul: hlavní funkce membránových proteinů a jejich charakteristika, hlavní typy membránových přenašečů malých molekul: kanály: mechanismus iontové selektivity, pohyb vody a aquaporiny; transportéry: transport glukosy, typy GLUT proteinů, mechanismus transportu glukosy pomocí GLUT1 transportéru; pumpy třídy P, V a F; mechanismu Na+/K+ ATPasové pumpy; ABC proteiny - flipasy;
4. Pohyb proteinů do membrán a organel I: Intracytoplasmatický transport proteinů: cílení proteinů do lumen a membrány ER, kontrola kvality sbalení proteinů v ER, cílení do mitochondrií, cílení do peroxisomů, transport do a ven z jádra;
5. Pohyb proteinů do membrán a organel II: vezikulární transport, sekrece a endocytosa: mechanismus tvorby vezikul, časná fáze sekreční dráhy: retrográdní a anterográdní transport, pozdní fáze sekreční dráhy, cílení do lysosomů, endocytosa
6. Signální transdukce I: úvod, obecná charakteristika, od extracelulárního signálu k buněčné odezvě, signální molekuly, receptory, sekundární poslové, monomerní a trimerní G-proteiny, protein-kinasy a fosfatasy, adaptorové proteiny, receptory asociované s G proteiny
8. Cytoskeleton I: složky; mikrofilamenta: G-aktin a F-aktin, struktura a dynamika aktinových filament, mechanismus skládání aktinových filament; aktin-vazebné proteiny; organizace aktinových buněčných struktur; intracelulární pohyb řízen regulací polymerace aktinu; aktinové motory – myosiny; princip pohybu myosinu, mechanismus kontrakce svalu příčně pruhovaného a svalu hladkého
9. Cytoskeleton II: mikrotubuly; struktura a charakteristika tubulinu; organizační centra mikrotubul (MTOC), regulace struktury a dynamiky mikrotubul, motory využívající mikrotubuly: kinesiny a dyneiny; role mikrotubul v mitóze, organizace mitotického vřeténka, kinetochor; intermediární filamenta; rozdělení, lokalizace a funkce; koordinace jednotlivých složek cytoskeletonu
10. Buněčný cyklus a jeho kontrola: charakteristika jednotlivých fází buněčného cyklu; kontrolní body; cykliny, cyklin-dependentní kinasy a ubikvitin-ligasy a regulace jejich aktivity, regulace vstupu do buněčného cyklu, restrikční bod, RB protein, E2F transkripční faktor, mitosa a její regulace, cytokinese; meiosa
11. Od kmenových buněk po buněčnou smrt: vývoj embryonálních kmenových buněk; počáteční kroky diferenciace; mechanismus buněčné polarity, asymetrické buněčné dělení; buněčná smrt a její regulace; programovaná buněčná smrt – apoptosa; rodina Bcl2 proteinů a jejich charakterizace; adaptérové proteiny, apoptosom; aktivace kaspas; vnitřní a vnější dráha apoptosy
12. Buněčná integrace do tkání: mechanismus adheze typu buňka-buňka a buňka-matrix, extracelulární matrix bazální laminy, typy buněčných spojení: adhesní kontakt, těsná spojení a komunikační spojení, extracelulární matrix: bazální lamina
13. Molekulární mechanismy onkogeneze: rozdíly mezi zdravou a nádorovou buňkou, vznik a vývoj rakoviny, proto-onkogeny a tumor-supresory, rakovina a deregulace signálních drah pro růst a smrt buňky, růstové faktory, RB protein, p53 protein, metastázy
14. Metody molekulární biologie
Poslední úprava: Kubová Petra Ing. (25.04.2018)
1. Organization of eukaryotic cells and their integration into tissue, introduction to cytology and histology: eukaryotic cells organization: cell surface organization, cell-cell and cell-extracellular matrix interactions, cytoskeleton, cellular organels; types of tissue and their basic characterization: connective tissue, epithelial tissue, nervous tissue and muscle tissue
2. Regulation of protein function: protein folding: molecular chaperon and chaperonins; abnormally folded proteins, amyloid fibrils; protein degradation – ubiquitin-proteasom system; synthesis x degradation, mRNA degradation; modification of proteins: non-covalent modification: molecular switches, covalent modification: ubiquitinylation, phosphorylation, acetylation, glycosylation, S-S bridges formation, neddylation, sumoylation, methylation
3. Membrane proteins and their functions, mechanisms of transmembrane transport of ions and small molecules: main function of membrane proteins and their characteristic, main classes of membrane proteins tranporting ions and small molecules: channels: mechanism of ion selectivity, movements of water: aquaporins; transporters: transport of glucose, type of GLUT proteins, mechanism of GLUT 1 transporter; ATP-powered pumps P-, V- and F-classes, mechanism of Na+/K+ ATPase, ABC proteins - flipases;
4. Moving proteins into membranes and organelles I: intracytoplasmic trafficking: targeting proteins to and across the ER membrane, protein quality control in ER, targeting to mitochondria, targeting to peroxisomes, transport in and out of the nucleus
5. Moving proteins into membranes and organelles II: Vesicular trafficking, secretion and endocytosis: mechanism of vesicle budding and fusion, early stages of the secretory pathway: retrograde and anterograde transport, later stages of the secretory pathway, targeting to the lysosomes, endocytosis
6. Signal transduction I: introduction to signal pathways, from extracellular signal to cellular response, signal transduction molecules: receptors, ligands, second messengers, monomeric and trimeric G-proteins, protein-kinases and phosphatases, adaptor molecules, G-protein-coupled receptors
7. Signal transduction II: signaling pathways controlling gene expression: receptor of tyrosine kinases, receptor of serine kinases, JAK-STAT signaling pathway, Ras/MAP kinase pathway, phosphoinositide signaling pathway, PI-3 kinase pathway, signaling pathway controlled by ubiquitinylation: Wnt, Hedgehog and NFkB, signaling pathway controlled by protein cleavage: Notch/Delta
8. Cytoskeleton I: components, microfilaments, G-actin and F-actin, dynamics of actin filaments, mechanism of actin filaments assembly, actin-binding proteins, organization of actin-based cellular structures, intracellular movements by regulation of actin polymerization, actin-based motors: myosins, principle of myosin-powered movements, contraction of skeletal and smooth muscles
9. Cytoskeleton II: microtubule structure and characteristics of tubulin; microtubule-organizing center (MTOC), microtubul structure and dynamics and their regulation, microtubule-based motor proteins: kinesines and dyneins; the role of microtubules in mitosis, composition of mitotic spindle, kinetochores; intermediate filaments: classes, localization and function, coordination and cooperation of cytoskeleton elements
10. The eukaryotic cell cycle and its control: characteristics of individual stages of the cell cycle and its control points, cyclins, cyclin-dependent kinases and ubiquitin-ligases and regulation of their activity, introduction to cell cycle regulation: restriction point, RB protein, E2F transcription factor, mitosis and its regulation, cytokinesis, meiosis
11. From stem cells to cell death: early mammalian development and first differentiation events, embryonic stem cells, cell polarity mechanisms, asymmetric cell division, cell death and its regulation, programmed cell death – apoptosis, family of Bcl2 proteins and their characteristics, adapter proteins, apoptosome, caspase activation, apoptotic pathways and its regulation
12. Integrating cells into tissues: cell-cell adhesion and interaction, cell-extracellular matrix adhesion and contacts, types of cellular junctions: adherent junctions and desmosomes, tight junctions and gap junctions, extracellular matrix: basal lamina
13. Molecular biology of cancer: differences between normal and cancer cells, the origins and development of cancer, proto-oncogenes and tumor suppressors, cancer and misregulation of cell growth and cell death: growth factors, RB protein, p53 protein…., metastasis