PředmětyPředměty(verze: 853)
Předmět, akademický rok 2019/2020
  
Numerické metody analýzy nelineárních dynamických modelů I, II - D413006
Anglický název: Numerical methods of Analysis of Non-linear Dynamical Models I, II
Zajišťuje: Ústav matematiky (413)
Platnost: od 2011
Semestr: zimní
Body: zimní s.:0
E-Kredity: zimní s.:0
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:0/0 Jiné [hodiny/týden]
Počet míst: neurčen / neurčen (neurčen)
Minimální obsazenost: neomezen
Jazyk výuky: čeština
Způsob výuky: prezenční
Úroveň:  
Pro druh:  
Poznámka: předmět je určen pouze pro doktorandy
student může plnit i v dalších letech
Garant: Kubíček Milan prof. RNDr. CSc.
Je záměnnost pro: AP413005, P413005
Anotace
Poslední úprava: Šmídová Ludmila (14.03.2012)
Bifurkační jevy v nelineárních dynamických systémech. Větvení rovnovážných stavů v diagramu řešení, kontinuace, větvicí body, Hopfova bifurkace, bifurkační diagram. Výpočet periodických řešení a jejich stabilita, kontinuace. Evoluční diagram. Výpočet Ljapunovových exponentů pomocí variačních rovnic a fraktální dimenze atraktoru z časových řad. Numerické metody pro analýzu systémů s rozloženými parametry.
Výstupy studia předmětu
Poslední úprava: Kubíček Milan prof. RNDr. CSc. (13.10.2015)

Studenti budou umět: Analyzovat dynamické chování modelu popsaného systémem obyčejných diferenciálních rovnic v závislosti na parametrech.

Literatura
Poslední úprava: Šmídová Ludmila (14.03.2012)

Holodniok M., Klíč A., Kubíček M., Marek M.: Metody analýzy nelineárních dynamických modelů.

Sylabus
Poslední úprava: Kubíček Milan prof. RNDr. CSc. (13.10.2015)

1. Systémy se soustředěnými parametry. Příklady.

2. Kontinuační algoritmus.

3. Diagram stacionárních řešení.

4. Stabilita stacionárních řešení.

5. Větvení stacionárních řešení.

6. Hopfova bifurkace.

7. Konstrukce bifurkačního diagramu.

8. Metody simulace a konstrukce fázového portrétu.

9. Výpočet a kontinuace periodických řešení.

10. Větvení periodických řešení.

11. Charakterizace chaotických atraktorů.

12. Neautonomní systémy.

13. Vybrané metody pro analýzu systémů s rozloženými parametry.

14. Primární a sekundární bifurkace.

Studijní prerekvizity
Poslední úprava: Kubíček Milan prof. RNDr. CSc. (13.10.2015)

Matematika I,II, Matematika pro chemické inženýry

 
VŠCHT Praha