SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Numerical Methods - B413004
Title: Numerické metody
Guaranteed by: Department of Mathematics, Informatics and Cybernetics (446)
Faculty: Faculty of Chemical Engineering
Actual: from 2022 to 2023
Semester: both
Points: 5
E-Credits: 5
Examination process:
Hours per week, examination: 2/2, C+Ex [HT]
Capacity: winter:50 / 50 (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Additional information: http://předmět je vyučován pouze v zimním semestru
Note: course can be enrolled in outside the study plan
enabled for web enrollment
you can enroll for the course in winter and in summer semester
Guarantor: Červená Lenka RNDr. Ph.D.
Class: Předměty pro matematiku
Classification: Mathematics > Mathematics General
Interchangeability : AB413004, N413005
Is interchangeable with: AB413004
This subject contains the following additional online materials
Annotation -
The course deals with methods for approximation of functions, derivatives and integrals, with methods for solving linear and nonlinear algebraic equations, with methods for solving ordinary/partial differential equations with initial/boundary conditions, and with methods for experimental data evaluation. By learning these numerical methods students will gain insight into problem formulation and develop the ability to derive a problem solution and estimate its accuracy.
Last update: Fialová Jana (15.01.2018)
Course completion requirements -

individual project - assesment, written exam, oral exam

Last update: Dubcová Miroslava (16.02.2018)
Literature -

R: M. Kubíček, M. Dubcová, D. Janovská, Numerical Methods and Algorithms, http://www.vscht.cz/mat/Ang/NM-Ang/NM-Ang.pdf

A: J. F. Epperson: An Introduction to Numerical Methods and Analysis,Wiley, New York, 2002, ISBN 0-471-31647-4

Last update: Červená Lenka (29.08.2024)
Teaching methods -

Lectures and exercise classes.

Last update: Fialová Jana (15.01.2018)
Syllabus -

1. Interpolation.

2. Interpolation by spline functions.

3. Difference formulas, quadrature formulas.

4. Methods of linear algebra.

5. Systems of nonlinear equations. Newton method.

6. Initial value problem for ODEs. One-step methods.

7. Stiff systems. Multistep methods. Stability. Error estimation.

8. Boundary value problem for ODEs. Finite-difference methods.

9. Boundary value problem for ODEs. Shooting methods.

10. Finite-difference methods for linear parabolic PDEs.

11. Finite-difference methods for nonlinear parabolic PDEs.

12. Methods of lines.

13. Finite-difference methods for elliptic PDEs.

14. Linear regression.

Last update: Červená Lenka (29.08.2024)
Learning outcomes -

Students will be able to formulate mathematical models using algebraic or differential equations. They will gain an overview of the commonly used numerical methods and they will learn how to determine the accuracy of numerical solutions.

Last update: Fialová Jana (15.01.2018)
Entry requirements -

Students are expected to have either completed the prerequisite course Mathematics B or possess the equivalent knowledge prior to enrolling in the course.

Last update: Borská Lucie (13.05.2019)
Registration requirements -

Mathematics A

Last update: Borská Lucie (06.05.2019)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha