SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Biosignals and models - M445016
Title: Biosignály a modely
Guaranteed by: Department of Mathematics, Informatics and Cybernetics (446)
Faculty: Faculty of Chemical Engineering
Actual: from 2021 to 2022
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, Ex [HT]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Additional information: http://moodle.vscht.cz/course/view.php?id=119
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Vyšata Oldřich MUDr. Ph.D.
Interchangeability : N445074
Annotation -
The course includes selected methods of the biomedical modeling and data analysis using relevant information systems. Custom theme includes a description of the acquisition and analysis of multichannel biomedical data and images with their subsequent modeling. The focus of the course is on mathematical data processing and well-researched assessment results. It allows students to unify view on the biological data processing by using computer technology, especially MATLAB programming environment.
Last update: KNOCIKOJ (24.06.2024)
Course completion requirements - Czech

Vypracování a obhajoba pěti ročníkových projektů: 0 - 30 bodů

Ústní zkouška: 0-70 bodů

Celkové bodové hodnocení: 100-90 A, 89-80 B, 79-70 C, 69-60 D, 59-50 E, 49-0 F.

Last update: KNOCIKOJ (17.09.2023)
Literature

Obligatory:

  • Izhikevich E. M.. Dynamical Systems in Neuroscience: The

    Geometry of Excitability and Bursting (Computational

    Neuroscience). : The MIT Press, 2007, s. ISBN 0262090430.

Recommended:

  • Knociková, J., Petrásek, T.. Quantitative electroencephalographic biomarkers

    behind major depressive disorder. In Biomedical signal processing

    and control. 68 (2021): -.

Optional:

  • Reddy D.C.. Biomedical Signal Processing - Principles and

    Techniques,. : McGraw Hill, 2005, s. ISBN 0070583889.

Last update: prepocet_literatura.php (19.12.2024)
Syllabus -

1. Biological signals as a source of medical data, homeostasis, genesis and characteristics of featured biosignals (ECG, EEG, EMG, ENG, EOG…)

2. Different biosignals according to the phyisical essence and rhytmicity. Properties of biosignals and adequate methods of analysis.

3. Generation and transfer of biosignals. Passive and active transport at a cellular level, action potential.

4. Recording of biosignals. Sampling, quantizing and digital filtration. Variety of filters and methods of the noise elimination.

5. Processing of signals in time and frequency domain, spectral analysis, periodogram and FFT.

6. Non-stationarity and modification of the time-frequency resolution. Wavelet analysis of biosignals.

7. Electrocardiography, heart rate variability, electrical axis of the heart. Nonlinear dynamics in analysis of parameters of normal and pathological ECG.

8. Chaos a dynamical analysis of biosignals. The entropic brain theory.

9. Quantitative electroencephalography, automatic detection of patterns. Analysis of EEG changes under different neuropsychiatric conditions.

10. Discriminant and cluster analysis, fuzzy sets.

11. Topographic brain mapping – amplitude, frequency…

12. Biostatistics and testing of the hypotheses in biomedical studies.

13. Artificial neural networks, introduction to the methods of artificial intelligence.

14. Biosignals and detection of quantitative biomarkers in physiological and pathophysiological conditions.

Last update: KNOCIKOJ (18.09.2023)
Learning resources - Czech

www.honeywellprocess.com/

www.mathworks.com/

Last update: KNOCIKOJ (24.06.2024)
Learning outcomes -

Students completing the course will be able to uderstand the biomedical, mathematical and physical essence of biosignals (especially cognitive evoked potentials and EEG, ECG, ventilation parameters and muscle activity). Students will be able to suggest optimal methods of mathematical processing of biosignals, based on their nonstationary and nonlinear nature. Students will be familiar with novel trends of mathematical processing in research and clinical practice.

Last update: KNOCIKOJ (28.06.2024)
Registration requirements -

none

Last update: Pátková Vlasta (20.04.2018)
Teaching methods
Activity Credits Hours
Obhajoba individuálního projektu 1 28
Účast na přednáškách 1 28
Práce na individuálním projektu 1 28
Účast na seminářích 1 28
4 / 4 112 / 112
 
VŠCHT Praha