SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Quantum Chemistry - N403021
Title: Kvantová chemie
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2020
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Level:  
Is provided by: M403001
Guarantor: Slavíček Petr prof. RNDr. Bc. Ph.D.
Interchangeability : M403001, S403021
Is interchangeable with: S403021, M403001
Examination dates   Schedule   
Annotation -
Basic information on the methods of modern quantum chemistry (i.e. quantum theory of atoms and molecules) is provided in this course. The students will learn both the theory and practical applications on problems in the fields of physical chemistry, spectroscopy, inorganic and organics chemistry.
Last update: Slavíček Petr (21.08.2013)
Literature -

R: A. Szabo, S. Ostlund: Modern Quantum Chemistry. Dover Publications, 1996, 0486691861.

R: I. Levine: Quantum chemistry. Prentice Hall, 2009, 0-13-613106-9.

R: P. W. Atkins, R. R. Friedman: Molecular Quantum Mechanics, Oxford University Press, Oxford 2010, 0199541426.

R: M. Bureš: Chemická fyzika, SNTL, Praha, 1986.

A: R. Polák, R. Zahradník: Kvantová chemie, SNTL Praha 1988

A: C. J. Cramer: Essentials of Computational Chemistry. J.Wiley and Sons, 2004, 0470091827.

Last update: TAJ403 (25.09.2013)
Syllabus -

1. Principles of quantum mechanics: postulates, principle of superposition, wave function.

2. Bases, operators, eigenvalues..

3. The Hamilton operator, the Schroedinger equation, particle in a box.

4. Linear harmonic oscillator.

5. Operators of orbital momentum.

6. The hydrogen atom, spin.

7. Matrix formulation of the Schroedinger equation and its numerical solving.

8. Systems with many particles, Slater determinant.

9. Energy of molecules, formulation of the Hamiltonian for real molecule.

10. The SCF method, Roothaan equations.

11. Huckel orbitals, Slater orbitals.

12. Ab intio calculations, estimation of the correlation energy.

13. Molecular properties: total energy, orbital energies, molecular geometry.

14. Molecular properties: Population analysis, dipole moment.

Last update: ROZ403 (30.04.2010)
Learning resources -

http://www.vscht.cz/fch/cz/vyuka/N403021.html

Last update: Slavíček Petr (21.08.2013)
Learning outcomes -

The students will know:

  • theoretical foundations of quantum theory of atoms and molecules
  • the work with the basic SW in quantum chemistry
  • how to formulate and solve problems related to the structure and properties of molecules and molecular systems

Last update: TAJ403 (13.12.2013)
Registration requirements -

Mathematics I, Physical Chemistry I

Last update: Slavíček Petr (21.08.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Práce na individuálním projektu 1.5 42
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 1 28
5 / 4 140 / 112
Coursework assessment
Form Significance
Report from individual projects 30
Oral examination 70

 
VŠCHT Praha