|
|
|
||
The course covers the fundamentals of statistical thermodynamics of classical molecular systems and its applications in molecular modelling. The lecture includes general methods of mathematical statistics, which can be used in many other fields.
Last update: Malijevský Alexandr (30.08.2013)
|
|
||
R:Malijevský A, Lekce ze statistické termodynamiky, VŠCHT, Praha, 2009, 978-80-7080-710-1 R:Nezbeda I.,Kolafa J.,Kotrla M., Úvod do počítačových simulací. Metody Monte Carlo a molekulární dynamiky, Karolinum, Praha, 2003, 80-246-0649-6 A: Atkins P.W., de Paula J., Physical Chemistry, Oxford University Press, 2010, 978-0-19-954337-3 A: Frenkel D.,Smit B, Understanding Molecular Simulation � From Algorithms to Applications, New York, 2002, Academic Press, 0-12-267351-4 A: Allen M. P.,Tildesley D. J., Computer Simulation of Liquids, Oxford, Clarendon Press, 2002, 0-19-855375-7 Last update: TAJ403 (10.09.2013)
|
|
||
1. Classical thermodynamics - a brief overview. Basic principles of statistical mechanics, ergodic hypothesis. Phase space. 2. Mathematical statistics - main distributions: binomial, Poisson, Gaussian. Mean and fluctuation. Stirling's formula (derivation). 3. Microcanonical ensemble. Entropy as a measure of chaos. A link between statistical mechanics and thermodynamics. 4. Virial and equipartition theorem. Calculation of energy and specific heats - examples. 5. Canonical and grand-canonical ensembles. Thermodynamic functions and their fluctuations. Partition function. 6. Ideal gas: from the partition function towards the equation of state. 7. Non-ideal systems. Molecular models. Correlation functions and structure factor. Virial expansion. 8. Application I: Calculation of equilibrium constant for the chemical reactions in the gas phase. 9. Application II: harmonic ideal crystal and black-body radiation. 10. Monte Carlo method: calculation of mean values and integrals. Random number generator. The practical implementation. 11. Advanced methods of Monte Carlo: Markov chain, Metropolis sampling. MC in various ensembles. 12. Molecular dynamics: basic integrators. 13. Tricks and tips for solving simulation problems: periodic boundary conditions, nearest neighbours linked cell list, analysis, estimation of errors 14. Modelling a stochastic system - own work. Last update: Malijevský Alexandr (30.08.2013)
|
|
||
http://www.vscht.cz/fch/cz/pomucky/kolafa/N403027.html Last update: Kolafa Jiří (26.09.2013)
|
|
||
The students will be able to: Understand fundamentals of (classical) molecular systems Apply statistical and simulation methods for stochastic processes Determine measurable (macroscopic) quantities from the molecular characteristics of matter Last update: Malijevský Alexandr (30.08.2013)
|
|
||
Physical chemistry I and II Last update: Kolafa Jiří (26.09.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Obhajoba individuálního projektu | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 2 | 56 | ||
Účast na seminářích | 1 | 28 | ||
6 / 6 | 168 / 168 |
Coursework assessment | |
Form | Significance |
Defense of an individual project | 10 |
Report from individual projects | 10 |
Examination test | 30 |
Continuous assessment of study performance and course -credit tests | 30 |
Oral examination | 20 |