SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Mathematical methods for physical chemistry - N403045
Title: Matematické metody pro fyzikální chemii
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Level:  
Guarantor: Kolafa Jiří prof. RNDr. CSc.
Malijevský Alexandr prof. Mgr. Ph.D., DSc.
Is interchangeable with: M403016
Examination dates   Schedule   
Annotation -
The course repeats and extends the basic mathematical knowledge of students by advanced topics needed for theoretical and experimental work. The chosen methods are illustrated on solved problems.
Last update: Malijevský Alexandr (24.09.2015)
Literature -

Z:Boas, M. L.: Mathematical Methods in the Physical Sciences

R:Goodson D.Z., Mathematical methods for physical and analytical chemistry,Wiley,New York,2011,978-0-470-47354-2

A:Rektorys K,Přehled užité matematiky I,Praha,Prometheus,2009,978-80-7196-180-2

A:Ralston A.,Základy numerické matematiky,Praha,Academia,1978

Last update: Malijevský Alexandr (24.09.2015)
Teaching methods -

Lectures within which illustrative problems will be solved. Within the part covering numerical methods the mathematical software Maple will also be used.

Last update: Malijevský Alexandr (24.09.2015)
Syllabus -

1. Calculus of single variable functions

2. Calculus of multivariable functions

3. Coordinate transformation. Path and surface integrals

4. Ordinary differential equations

5. Partial differential equations, Green function

6. Fourier transform

7. Calculus of variations

8. Linear algebra: overview

9. Fundamentals of Numerical Mathematics: interpolation and extrapolation, numerical differentiation and quadrature

10. Numerical solutions of differential equations

11. Fitting of functions

12. Introduction to Mathematical Statistics I

13. Introduction to Mathematical Statistics II

14. Experiment design in terms of statistics and errors

Last update: Malijevský Alexandr (24.09.2015)
Learning resources -

http://www.vscht.cz/fch/cz/pomucky/kolafa/N403045.html

Last update: Kolafa Jiří (26.09.2013)
Learning outcomes -

Students will be able to:

Solve standard mathematical problems

Solve advanced problems in many areas of physical chemistry and other areas of chemistry and technology.

Propose experiments and process data including error analysis.

Know what type of problems can be solved mathematically, which methods are apropriate, and how to design a strategy solutions (analytical calculation, numerical modeling or computer simulation)

Last update: Malijevský Alexandr (24.09.2015)
Registration requirements -

Mathematics I, Physical Chemistry I

Last update: Kolafa Jiří (21.08.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
3 / 3 84 / 84
Coursework assessment
Form Significance
Regular attendance 10
Examination test 30
Continuous assessment of study performance and course -credit tests 30
Oral examination 30

 
VŠCHT Praha