|
|
|
||
Basic principles of selected statistical methods for analysing multidimensional data will be outlined with focus on reconciliation of the assumptions of the methods and interpretation of their results. Students will learn how to perform corresponding calculations in statistical software R.
Last update: Kříž Pavel (17.05.2016)
|
|
||
Credit for seminar project. Oral exam. Last update: Kříž Pavel (09.02.2018)
|
|
||
Meloun M., Militký J., Hill M.: Počítačová analýza vícerozměrných dat v příkladech, Academia, Praha 2005.
Hendl J.: Přehled statistických metod, Portál, Praha 2012.
Härdle W. K., Simar L.: Applied Multivariate Statistical Analysis, Springer 2012.
Rencher A. C., Christensen W. F.: Methods of Multivariate Analysis, John Wiley & Sons 2002.
Varmuza K., Filzmoser P.: Introduction to Multivariate Statistical Analysis in Chemometrics, CRC Press 2009. Last update: Kříž Pavel (17.05.2016)
|
|
||
Lectures and seminars. Last update: Kříž Pavel (17.05.2016)
|
|
||
1. Data vector, data matrix and matrix algebra (multiplication, inverse matrix, eigenvalues and eigenvectors), covariance matrix. 2. Vizualisation of multidimensional data. 3. Exploratory data analysis (EDA). 4. Cluster analysis. 5. Principal component analysis (PCA). 6. Multidimensional scaling. 7. Parameter estimation and hypothesis testing. Bayesian statistics. 8. Multivariate analysis of variance (MANOVA). 9. Regression methods 1 - multiple linear regression. 10. Regression methods 2 - principal component regression (PCR), generalized linear models (GLM). 11. Discriminant analysis. 12. Canonical correlation analysis. 13. Factor analysis (FA). 14. Supplements and summary of multivariate statistical methods, buffer for holidays. Last update: Kříž Pavel (18.10.2016)
|
|
||
Lecture notes on e-learning
Statistická analysa dat v R (lecture notes by Doc. Spiwok, VSCHT) http://web.vscht.cz/~spiwokv/statistika/skripta.pdf Last update: Kříž Pavel (17.05.2016)
|
|
||
Students will know:
1. Understand basic principles of selected statistical methods for multivariate data analysis
2. Reconcile assumptions of particular methods.
3. Understand the results of the methods.
4. Perform essential calculations with specific data in specialized software (R).
Last update: Kříž Pavel (17.05.2016)
|
|
||
Basic knowledge of probability theory and statistics (corresponding to the content of the course Applied statistics (N413004) or Statistical data analysis (N143042)). Last update: Kříž Pavel (17.05.2016)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |