SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Multivariate data analysis - N413040
Title: Mnohorozměrná analýza dat
Guaranteed by: Department of Mathematics (413)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: summer
Points: summer s.:5
E-Credits: summer s.:5
Examination process: summer s.:
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Level:  
Is provided by: M413004
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Šnupárková Jana RNDr. Ph.D.
Zikmundová Markéta Mgr. Ph.D.
Kříž Pavel Ing. Mgr. Ph.D.
Is interchangeable with: M413004, AM413004
Examination dates   Schedule   
Annotation -
Basic principles of selected statistical methods for analysing multidimensional data will be outlined with focus on reconciliation of the assumptions of the methods and interpretation of their results. Students will learn how to perform corresponding calculations in statistical software R.
Last update: Kříž Pavel (17.05.2016)
Course completion requirements -

Credit for seminar project. Oral exam.

Last update: Kříž Pavel (09.02.2018)
Literature -

Meloun M., Militký J., Hill M.: Počítačová analýza vícerozměrných dat v příkladech, Academia, Praha 2005.

Hendl J.: Přehled statistických metod, Portál, Praha 2012.

Härdle W. K., Simar L.: Applied Multivariate Statistical Analysis, Springer 2012.

Rencher A. C., Christensen W. F.: Methods of Multivariate Analysis, John Wiley & Sons 2002.

Varmuza K., Filzmoser P.: Introduction to Multivariate Statistical Analysis in Chemometrics, CRC Press 2009.

Last update: Kříž Pavel (17.05.2016)
Teaching methods -

Lectures and seminars.

Last update: Kříž Pavel (17.05.2016)
Syllabus -

1. Data vector, data matrix and matrix algebra (multiplication, inverse matrix, eigenvalues and eigenvectors), covariance matrix.

2. Vizualisation of multidimensional data.

3. Exploratory data analysis (EDA).

4. Cluster analysis.

5. Principal component analysis (PCA).

6. Multidimensional scaling.

7. Parameter estimation and hypothesis testing. Bayesian statistics.

8. Multivariate analysis of variance (MANOVA).

9. Regression methods 1 - multiple linear regression.

10. Regression methods 2 - principal component regression (PCR), generalized linear models (GLM).

11. Discriminant analysis.

12. Canonical correlation analysis.

13. Factor analysis (FA).

14. Supplements and summary of multivariate statistical methods, buffer for holidays.

Last update: Kříž Pavel (18.10.2016)
Learning resources -

Lecture notes on e-learning

Statistická analysa dat v R (lecture notes by Doc. Spiwok, VSCHT) http://web.vscht.cz/~spiwokv/statistika/skripta.pdf

Last update: Kříž Pavel (17.05.2016)
Learning outcomes -

Students will know:

1. Understand basic principles of selected statistical methods for multivariate data analysis

2. Reconcile assumptions of particular methods.

3. Understand the results of the methods.

4. Perform essential calculations with specific data in specialized software (R).

Last update: Kříž Pavel (17.05.2016)
Registration requirements -

Basic knowledge of probability theory and statistics (corresponding to the content of the course Applied statistics (N413004) or Statistical data analysis (N143042)).

Last update: Kříž Pavel (17.05.2016)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha