SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Experimental Identification - N445021
Title: Experimentální identifikace
Guaranteed by: Department of Computing and Control Engineering (445)
Faculty: Faculty of Chemical Engineering
Actual: from 2020
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Level:  
Guarantor: Kukal Jaromír doc. Ing. Ph.D.
Bártová Darina Ing. Mgr. Ph.D.
Is interchangeable with: M445007, AP445012, P445012
Examination dates   Schedule   
Annotation -
The main goal of the course is to familiarize the students with the common generally valid principles of system identification both analogue and discrete
Last update: TAJ445 (14.12.2013)
Literature -

R:Šimandl M.,Identifikace systémů a filtrace, Vydavatelství ZČU, Plzeň,1997,8070821701

R:Noskievič P.,Modelování a identifikace systémů,Montanex a.s.,Ostrava,1999,80722250302

A:Ljung L.,Systém Identification. Theory for the User,Prentice Hall PTR,N.J.,1999,0136566952

Last update: TAJ445 (30.09.2013)
Requirements to the exam -

Student will obtain the credits after the successful finishing

Last update: Bártová Darina (25.06.2013)
Syllabus -

1. Experimental identification - basic scheme, wide and narrow definition of the branch

2. Structure model selection and process dynamics

3. Signals and their characteristics, signal discretization. Input testing signals, their selection

4. Adequacy criteria for models and processes, least square method, its modification

5. Identification methods classification, deterministic models in time and frequency domain

6. Dynamic system identification via transfer characteristics - project I

7. Methods of Strejc, Broid, progressive integration - project II

8. Frequency domain identification - method of Kardašov-Karnjušin

9. Frequency domain identification - correlation and spectral analysis, statistic dynamics methods

10. Stochastic models of discrete type, noise models, drift description

11. Parameter estimation methods for discrete models, least square - simple and weighted

12. Generalized, extended, repeated LSM, maximum credibility method

13. Numeric solution of LSM, recursive methods, robust identification, bootstrap, jackknife - project III

14. Large project

Last update: Bártová Darina (25.06.2013)
Learning resources -

internal materials

Last update: Bártová Darina (25.06.2013)
Learning outcomes -

Students will be able to:

• work with common identification methods

• work with their implementation

• evaluate their efficiency

• students will take part in one large complex work (beginning with data measuring up to model formulation)

• students will use MATLAB interface for model identification

Last update: TAJ445 (14.12.2013)
Registration requirements -

Matematics II

Last update: Bártová Darina (25.06.2013)
Teaching methods
Activity Credits Hours
Obhajoba individuálního projektu 1.5 42
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
5 / 5 140 / 140
Coursework assessment
Form Significance
Regular attendance 15
Report from individual projects 20
Oral examination 65

 
VŠCHT Praha