SubjectsSubjects(version: 965)
Course, academic year 2022/2023
  
Advanced Methods of Chemical Physics I - P402012
Title: Moderní metody chemické fyziky I
Guaranteed by: Department of Analytical Chemistry (402)
Faculty: Faculty of Chemical Engineering
Actual: from 2019 to 2022
Semester: summer
Points: summer s.:0
E-Credits: summer s.:0
Examination process: summer s.:
Hours per week, examination: summer s.:2/1, other [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Fárník Michal doc. Mgr. Ph.D., DSc.
Votava Ondřej Mgr. Ph.D.
Urban Štěpán prof. RNDr. CSc.
Classification: Chemistry > Physical Chemistry
Is interchangeable with: AP402012
Annotation -
This course teaches the basic principles of molecular and chemical physics which are essential for building and understanding experiments in molecular, physical and analytical chemistry. This two-term course is divided into 4 topics:, 1) molecular beam; 2) mass spectrometry, 3) lasers and optical methods; 4)surface scanning techniques. In the first part, underlying physical principles of these methods will be introduced, and in the second part, examples of modern experiments based on the above techniques will be reviewed. Particular examples of the topics introduced in this first part are: molecular beam techniques; basic principles of mass analyzers, magnetic and electric sector fields, time-of-flight spectrometers, quadrupoles etc.; theory and examples of lasers; tunneling electron and atom force microscopy.
Last update: Kubová Petra (21.08.2018)
Literature -

R: Demtröder, W., Molecular Physics, Wiley-VCH; 1 edition (December 2, 2005), ISBN-10: 3527405666 R: Townes Ch., Schawlow A.L., Microwave spectroscopy, Dover Publications, 2nd edition (July 17, 2012), ISBN-10: 048661798X

R: Demtröder, W., Laser spectroscopy - experimental techniques, Springer; 4th edition (September 17, 2008), ISBN-10: 3540749527

A: G. Scoles, Atomic and Molecular Beam Methods: Volume 1, Oxford University Press, USA (November 24, 1988), ISBN-10: 0195042808

A: G. Scoles, Atomic and Molecular Beam Methods, Volume 2, vol. 2. Oxford: Oxford University Press, 1992. A: H. Pauly, Atom Molecule and Cluster Beams I. Basic Theory, Production, and Detection of Thermal Energy Beams. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo:

Last update: Kubová Petra (21.08.2018)
Syllabus -

1. Introduction, history and overview of the corresponding techniques and basic principles

2. Basic principles of molecular beams, effusive and supersonic expansions

3. Basics of kinetic theory and fluid dynamics

4. Molecular and cluster beam characterization

5. Basic theory of molecule-radiation interaction, overview of the techniques

6. Lasers: theory and instrumentation, population inversion, resonators

7. Pulsed and continuous lasers

8. Laser examples: gas phase lasers, dye lasers, solid state lasers

9. Non-linear frequency mixing

10. Basic principles of mass spectrometry

11. Ionization methods: electron and photoionization, proton transfer, field ionization, electrospray, MALDI etc.

12. Ion trajectories in electric and magnetic fields

13. Sector fields, time-of-flight methods, quadrupoles and higher multipoles, ion traps

14. Charged particle detection

15. Microwave and THz spectroscopy: basic principles and instrumentation

16. Surface methods: tunneling electron and atom force microscopy

Last update: Kubová Petra (21.08.2018)
Learning resources -

http://www.jh-inst.cas.cz/dynamics/

Last update: Kubová Petra (21.08.2018)
Learning outcomes -

The knowledge and skills gained by the student:

Ability to design experimental setups for study of chemistry at the molecular level, understand and apply laser- based technologies, microwave technologies, scanning microscope techniques; understand the principles of ion detection, cavity ring-down-spectroscopy, understand molecular beam principles, adiabatic cooling; ability to interpret the experiments in terms of basic quantum mechanics.

Last update: Kubová Petra (21.08.2018)
Entry requirements -

Molecular Physical Chemistry and Symetry, Molecular Spectroscopy

Last update: Setnička Vladimír (16.09.2018)
 
VŠCHT Praha