SubjectsSubjects(version: 877)
Course, academic year 2020/2021
  
Bioengineering Methods - AM409010
Title: Bioengineering Methods
Guaranteed by: Department of Chemical Engineering (409)
Actual: from 2019
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1 C+Ex [hours/week]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: English
Teaching methods: full-time
Level:  
For type: Master's (post-Bachelor)
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Slouka Zdeněk doc. Ing. Ph.D.
Interchangeability : M409010, N409057, S409057
Z//Is interchangeable with: M409010
Annotation -
Last update: Kubová Petra Ing. (22.01.2018)
The course is building on the basic knowledge of chemical engineering by the student and develops applications in bioengineering. Basic approaches including mass and energy balances, transport processes and reaction kinetics are synthesized to provide quantitative description of processes used in bioengineering. Special attention is given to reaction-transport processes in enzyme reactors and reactors with living cultures of microorganisms.
Aim of the course -
Last update: Kubová Petra Ing. (22.01.2018)

Students will be able to:

apply quantitative approaches of chemical engineering to biosystems

design basic types of enzyme reactors and bioreactors

design suitable unit operations for modification of inlets and outles from the bioreactor

Literature -
Last update: Schreiber Igor prof. Ing. CSc. (12.11.2018)

R: Shuler M. L. , Kargi F., DeLisa M., Bioprocess Engineering: Basic Concepts, 3rd Edition, Prentice Hall 2017, ISBN-13: 9780132901451

A: Doran P., Bioprocess Engineering Principles - 2nd Edition, Academic press 2012, ISBN: 9780122208515, 9780080917702

A: Villadsen J., Lee S.Y., Nielsen J., Stephanopoulos G. (eds.), Fundamental Bioengineering, Wiley-Blackwell, 2016, ISBN: 978-3527336746.

Learning resources -
Last update: Kubová Petra Ing. (22.01.2018)

lecture notes available at www.vscht.cz/uchi

Syllabus -
Last update: Kubová Petra Ing. (22.01.2018)

1. Enzyme catalysis, thermodynamics of enzyme reactions, limitin cases

2. Enzyme reactors, mathematical models and their analysis

3. Immobilized enzymes, effects of mass transport

4. Effectiveness factor, Damköhler number, analysis of heterogeneous enz. systems

5. Microbial growth, stoichiometry of growth, product formation

6. Growth in batch systems

7. Growth in continual systems

8. Structured vs unstructured models of growth

9. Construction and operation of some fermentor types

10. Stirring and aeration

11. Mixed microbial cultures and their interaction

12. Chemostat dynamics with mixed cultures

13. Operating conditions, scale-up

14. Metabolic engineering, metabolic networks

Registration requirements -
Last update: Kubová Petra Ing. (22.01.2018)

Unit operations of chemical engineering I and II

Course completion requirements -
Last update: Schreiber Igor prof. Ing. CSc. (30.05.2019)

Student must pass two tests during the course of semester (minimum 25 points out of 50 for each test).

Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1,5 42
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 0,5 14
4 / 4 112 / 112
 
VŠCHT Praha